On the characteristic rank and cohomology of oriented Grassmann manifolds

Tomáš Rusin

January 17, 2019

Introduction

Let us denote $G_{n, k}$ the Grassmann manifold of k-dimensional vector subspaces in \mathbb{R}^{n}, i.e. the space $O(n) /(O(k) \times O(n-k))$.

Introduction

Let us denote $G_{n, k}$ the Grassmann manifold of k-dimensional vector subspaces in \mathbb{R}^{n}, i.e. the space $O(n) /(O(k) \times O(n-k))$.
Let us denote $\widetilde{G}_{n, k}$ the oriented Grassmann manifold of oriented k-dimensional vector subspaces in \mathbb{R}^{n}, the space $S O(n) /(S O(k) \times S O(n-k))$.
We may suppose that $k \leq n-k$ for both of them.

Introduction

Cohomology ring of $G_{n, k}$

The cohomology ring of the Grassmann manifold $G_{n, k}$ is

$$
H^{*}\left(G_{n, k} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}\left[w_{1}, w_{2}, \ldots, w_{k}\right] / I_{n, k}
$$

where $\operatorname{dim}\left(w_{i}\right)=i$ and the ideal $I_{n, k}$ is generated by k homogeneous polynomials $\bar{w}_{n-k+1}, \bar{w}_{n-k+2}, \ldots, \bar{w}_{n}$, where each \bar{w}_{i} denotes the i-dimensional component of the formal power series

$$
1+\left(w_{1}+w_{2}+\cdots+w_{k}\right)+\left(w_{1}+w_{2}+\cdots+w_{k}\right)^{2}+\left(w_{1}+w_{2}+\cdots+w_{k}\right)^{3}+\cdots .
$$

Each indeterminate w_{i} is a representative of the ith Stiefel-Whitney class $w_{i}\left(\gamma_{n, k}\right)$ of the canonical k-plane bundle $\gamma_{n, k}$ over $G_{n, k}$.

Characteristic rank

The cohomology ring of $G_{n, k}$ is fully generated by the Stiefel-Whitney classes of its canonical bundle. But the same is not true for the oriented Grassmann manifold $\widetilde{G}_{n, k}$.

Characteristic rank

The cohomology ring of $G_{n, k}$ is fully generated by the Stiefel-Whitney classes of its canonical bundle. But the same is not true for the oriented Grassmann manifold $\widetilde{G}_{n, k}$.
The notion of characteristic rank quantifies the degree up to which the cohomology ring is generated by Stiefel-Whitney classes.

Definition

Let X be a connected, finite CW-complex and ξ a vector bundle over X. The characteristic rank of the vector bundle ξ, denoted charrank (ξ), is the greatest integer $q, 0 \leq q \leq \operatorname{dim}(X)$, such that every cohomology class in $H^{j}\left(X ; \mathbb{Z}_{2}\right)$ for $0 \leq j \leq q$ can be expressed as a polynomial in the Stiefel-Whitney classes $w_{i}(\xi)$ of ξ.

Cup-length

Let us recall the definition of the cup-length of a space as it turns out to be related to the characteristic rank.

Definition

For a path connected space X, we may define its \mathbb{Z}_{2}-cup-length $\operatorname{cup}_{\mathbb{Z}_{2}}(X)$ as the greatest number r such that there exist cohomology classes $x_{1}, \ldots, x_{r} \in H^{*}\left(X ; \mathbb{Z}_{2}\right)$ in positive dimensions such that $x_{1} \cdots x_{r} \neq 0$.

For the oriented Grassmann manifold $\widetilde{G}_{n, k}$ and its canonical bundle $\widetilde{\gamma}_{n, k}$ we have

$$
\operatorname{cup}\left(\widetilde{G}_{n, k}\right) \leq 1+\frac{k(n-k)-\operatorname{charrank}\left(\widetilde{\gamma}_{n, k}\right)-1}{2}
$$

Characteristic rank of $\widetilde{\gamma}_{n, k}$

There is a covering projection $p: \widetilde{G}_{n, k} \rightarrow G_{n, k}$, which is universal for $(n, k) \neq(2,1)$. To this 2 -fold covering, there is an associated line bundle ξ over $G_{n, k}$, such that $w_{1}(\xi)=w_{1}\left(\gamma_{n, k}\right)$, to which we have Gysin exact sequence
$\xrightarrow{\psi} H^{j-1}\left(G_{n, k}\right) \xrightarrow{w_{1}} H^{j}\left(G_{n, k}\right) \xrightarrow{p^{*}} H^{j}\left(\widetilde{G}_{n, k}\right) \xrightarrow{\psi} H^{j}\left(G_{n, k}\right) \xrightarrow{w_{1}} H^{j+1}\left(G_{n, k}\right) \rightarrow$
where $H^{j}\left(G_{n, k}\right) \xrightarrow{w_{1}} H^{j+1}\left(G_{n, k}\right)$ is the homomorphism given by the cup product with the first Stiefel-Whitney class $w_{1}(\xi)=w_{1}\left(\gamma_{n, k}\right)$.

Characteristic rank of $\widetilde{\gamma}_{n, k}$

There is a covering projection $p: \widetilde{G}_{n, k} \rightarrow G_{n, k}$, which is universal for $(n, k) \neq(2,1)$. To this 2 -fold covering, there is an associated line bundle ξ over $G_{n, k}$, such that $w_{1}(\xi)=w_{1}\left(\gamma_{n, k}\right)$, to which we have Gysin exact sequence
$\xrightarrow{\psi} H^{j-1}\left(G_{n, k}\right) \xrightarrow{w_{1}} H^{j}\left(G_{n, k}\right) \xrightarrow{p^{*}} H^{j}\left(\widetilde{G}_{n, k}\right) \xrightarrow{\psi} H^{j}\left(G_{n, k}\right) \xrightarrow{w_{1}} H^{j+1}\left(G_{n, k}\right) \rightarrow$
where $H^{j}\left(G_{n, k}\right) \xrightarrow{w_{1}} H^{j+1}\left(G_{n, k}\right)$ is the homomorphism given by the cup product with the first Stiefel-Whitney class $w_{1}(\xi)=w_{1}\left(\gamma_{n, k}\right)$. Since $p^{*} \gamma_{n, k} \cong \widetilde{\gamma}_{n, k}$, the image $\operatorname{Im}\left(p^{*}: H^{j}\left(G_{n, k}\right) \rightarrow H^{j}\left(\widetilde{G}_{n, k}\right)\right)$ is a subspace of the \mathbb{Z}_{2}-vector space $H^{j}\left(\widetilde{G}_{n, k}\right)$ consisting only of cohomology classes, which can be expressed as polynomials in the Stiefel-Whitney characteristic classes of $\widetilde{\gamma}_{n, k}$.

Characteristic rank of $\widetilde{\gamma}_{n, k}$

This implies that the characteristic rank of $\widetilde{\gamma}_{n, k}$ is equal to the greatest integer q, such that the homomorphism $p^{*}: H^{j}\left(G_{n, k}\right) \rightarrow H^{j}\left(\widetilde{G}_{n, k}\right)$ is surjective for all $j, 0 \leq j \leq q$, or equivalently, that the homomorphism $w_{1}: H^{j}\left(G_{n, k}\right) \longrightarrow H^{j+1}\left(G_{n, k}\right)$ is injective for all $j, 0 \leq j \leq q$.

Homomorphism $w_{1}: H^{j}\left(G_{n, k}\right) \longrightarrow H^{j+1}\left(G_{n, k}\right)$

Recall that

$$
H^{*}\left(G_{n, k}\right)=\mathbb{Z}_{2}\left[w_{1}, w_{2}, \ldots, w_{k}\right] /\left(\bar{w}_{n-k+1}, \ldots, \bar{w}_{n}\right) .
$$

Since in the quotient ring there are no relations in dimensions $n-k$ or lower, we always have $\operatorname{charrank}\left(\widetilde{\gamma}_{n, k}\right) \geq n-k-1$.

Homomorphism $w_{1}: H^{j}\left(G_{n, k}\right) \longrightarrow H^{j+1}\left(G_{n, k}\right)$

Recall that

$$
H^{*}\left(G_{n, k}\right)=\mathbb{Z}_{2}\left[w_{1}, w_{2}, \ldots, w_{k}\right] /\left(\bar{w}_{n-k+1}, \ldots, \bar{w}_{n}\right) .
$$

Since in the quotient ring there are no relations in dimensions $n-k$ or lower, we always have $\operatorname{charrank}\left(\widetilde{\gamma}_{n, k}\right) \geq n-k-1$. Let $g_{i} \in \mathbb{Z}_{2}\left[w_{2}, \ldots, w_{k}\right]$ be the reduction of the polynomial \bar{w}_{i} modulo w_{1}. Denote $g_{i}\left(\gamma_{n, k}\right)$ the corresponding cohomology class in $H^{i}\left(G_{n, k}\right)$.

Homomorphism $w_{1}: H^{j}\left(G_{n, k}\right) \longrightarrow H^{j+1}\left(G_{n, k}\right)$

Recall that

$$
H^{*}\left(G_{n, k}\right)=\mathbb{Z}_{2}\left[w_{1}, w_{2}, \ldots, w_{k}\right] /\left(\bar{w}_{n-k+1}, \ldots, \bar{w}_{n}\right) .
$$

Since in the quotient ring there are no relations in dimensions $n-k$ or lower, we always have $\operatorname{charrank}\left(\widetilde{\gamma}_{n, k}\right) \geq n-k-1$.
Let $g_{i} \in \mathbb{Z}_{2}\left[w_{2}, \ldots, w_{k}\right]$ be the reduction of the polynomial \bar{w}_{i} modulo w_{1}. Denote $g_{i}\left(\gamma_{n, k}\right)$ the corresponding cohomology class in $H^{i}\left(G_{n, k}\right)$. For $i \in\{n-k+1, n-k+2, \ldots, n\}$ the cohomology classes $g_{i}\left(\gamma_{n, k}\right)$ lie in the image of $w_{1}: H^{i-1}\left(G_{n, k}\right) \longrightarrow H^{i}\left(G_{n, k}\right)$.

Homomorphism $w_{1}: H^{j}\left(G_{n, k}\right) \longrightarrow H^{j+1}\left(G_{n, k}\right)$

By estimating the dimension of the image of the homomorphism $w_{1}: H^{j}\left(G_{n, k}\right) \longrightarrow H^{j+1}\left(G_{n, k}\right)$ we obtain the following proposition. ${ }^{1}$

Proposition

For a non-negative integer x, we associate with $H^{n-k+x+1}\left(G_{n, k}\right)$ $(2 \leq k \leq n-k)$ the set

$$
N_{x}\left(G_{n, k}\right):=\bigcup_{i=0}^{k-1}\left\{w_{2}^{b_{2}} \cdots w_{k}^{b_{k}} g_{n-k+1+i} ; 2 b_{2}+3 b_{3}+\cdots+k b_{k}=x-i\right\} .
$$

If $x \leq n-k-1$ and the set $N_{x}\left(G_{n, k}\right)$ is linearly independent, then

$$
w_{1}: H^{n-k+x}\left(G_{n, k}\right) \longrightarrow H^{n-k+x+1}\left(G_{n, k}\right)
$$

is a monomorphism.
${ }^{1}$ J. Korbaš, T. Rusin: On the cohomology of oriented Grassmann manifolds. Homology, Homotopy Appl., vol.18(2), 2016, 71-84.

The polynomials g_{i}

The sequence of polynomials g_{i} associated with $G_{n, k}$ is uniquely determined by k and it satisfies the recurrence formula

Recurrence formula

$g_{i}=w_{2} g_{i-2}+w_{3} g_{i-3}+\cdots+w_{k} g_{i-k}$.
Every $g_{i} \in \mathbb{Z}_{2}\left[w_{2}, \ldots, w_{k}\right]$ is a weighted homogeneous polynomial corresponding to a class in $H^{i}\left(G_{n, k}\right)$. For any such polynomial we will simply say that it lies in the dimension i.
Each element of the set $N_{x}\left(G_{n, k}\right)$ represents a polynomial lying in the dimension $n-k+x+1$.

Linear independence of $N_{x}\left(G_{n, k}\right)$

Any linear combination of elements from $N_{x}\left(G_{n, k}\right)$ can be written as

$$
\begin{equation*}
f_{x} g_{n-k+1}+\cdots+f_{x-k+1} g_{n}, \tag{1}
\end{equation*}
$$

where every $f_{j} \in \mathbb{Z}_{2}\left[w_{2}, \ldots, w_{k}\right]$ lies in dimension j.

Linear independence of $N_{x}\left(G_{n, k}\right)$

Any linear combination of elements from $N_{x}\left(G_{n, k}\right)$ can be written as

$$
\begin{equation*}
f_{x} g_{n-k+1}+\cdots+f_{x-k+1} g_{n}, \tag{1}
\end{equation*}
$$

where every $f_{j} \in \mathbb{Z}_{2}\left[w_{2}, \ldots, w_{k}\right]$ lies in dimension j.
We can express this sum using products of formal power series. Consider an element g in the ring of formal power series $\mathbb{Z}_{2}\left[\left[w_{2}, \ldots, w_{k}\right]\right]$ given by

$$
g=\sum_{i=0}^{\infty} g_{i}=1+g_{1}+g_{2}+\cdots
$$

For any $f \in \mathbb{Z}_{2}\left[w_{2}, \ldots, w_{k}\right]$ denote $[f \cdot g]_{i}$ the sum of all terms of formal power series $f \cdot g$ lying in dimension i.
The linear combination (1) is now exactly $[f \cdot g]_{n-k+x+1}$ for $f=f_{x}+\cdots+f_{x-k+1}$.

Linear independence of $N_{x}\left(G_{n, k}\right)$

Thus linear independence of the set $N_{x}\left(G_{n, k}\right)$ is equivalent to the condition that for any nonzero polynomial $f=f_{x}+\cdots+f_{x-k+1}$ we have $[f \cdot g]_{n-k+x+1} \neq 0$.

Linear independence of $N_{x}\left(G_{n, k}\right)$

Thus linear independence of the set $N_{x}\left(G_{n, k}\right)$ is equivalent to the condition that for any nonzero polynomial $f=f_{x}+\cdots+f_{x-k+1}$ we have $[f \cdot g]_{n-k+x+1} \neq 0$.
To progress further we need to allow for polynomials that are not weighted homogeneous.

Definition

Let $i \in \mathbb{N}$ and $f \in \mathbb{Z}_{2}\left[w_{2}, \ldots, w_{k}\right]$ be a polynomial that is a sum of polynomials each of which lies in dimension $j \leq i$. We will say that such a polynomial f is contained in dimension i.

Linear independence of $N_{x}\left(G_{n, k}\right)$

In this setting the recurrence relation for g_{i} translates to the following.

Definition

Suppose $f \in \mathbb{Z}_{2}\left[w_{2}, \ldots, w_{k}\right]$. Let us denote \bar{f} the polynomial obtained from f by replacing each instance of w_{k} with the sum $1+w_{2}+\cdots+w_{k-1}$.

Lemma

Suppose $f \in \mathbb{Z}_{2}\left[w_{2}, \ldots, w_{k}\right]$. If f is of the form $f=f_{x}+f_{x-1}+\cdots f_{x-k+1}$, where every f_{j} is lying in dimension j, then $f \neq 0$ implies $\bar{f} \neq 0$. If f is contained in dimension i, then \bar{f} is as well, and $[f \cdot g]_{i}=[\bar{f} \cdot g]_{i}$.

Hence, to prove linear independence of $N_{x}\left(G_{n, k}\right)$, it is sufficient to show that for any nonzero polynomial in indeterminates w_{2}, \ldots, w_{k-1} contained in dimension x we have $[\bar{f} \cdot g]_{n-k+x+1} \neq 0$.

Linear independence of $N_{x}\left(G_{n, k}\right)$

This adjustment impels us to view every g_{i} as a polynomial in one indeterminate w_{k} with coefficients in the ring $\mathbb{Z}_{2}\left[w_{2}, \ldots, w_{k-1}\right]$ and to consider $[\bar{f} \cdot g]_{n-k+x+1}$ as a linear combination of such polynomials.

Linear independence of $N_{x}\left(G_{n, k}\right)$

This adjustment impels us to view every g_{i} as a polynomial in one indeterminate w_{k} with coefficients in the ring $\mathbb{Z}_{2}\left[w_{2}, \ldots, w_{k-1}\right]$ and to consider $[\bar{f} \cdot g]_{n-k+x+1}$ as a linear combination of such polynomials.

Example

Consider $N_{4}\left(G_{18,3}\right)=\left\{w_{2}^{2} g_{16}, w_{3} g_{17}, w_{2} g_{18}\right\}$.
A linear combination of elements of this set is of the form $\alpha_{4} w_{2}^{2} g_{16}+\alpha_{3} w_{3} g_{17}+\alpha_{2} w_{2} g_{18}=[f \cdot g]_{20}$ for $f=\alpha_{4} w_{2}^{2}+\alpha_{3} w_{3}+\alpha_{2} w_{2}$.

Linear independence of $N_{x}\left(G_{n, k}\right)$

This adjustment impels us to view every g_{i} as a polynomial in one indeterminate w_{k} with coefficients in the ring $\mathbb{Z}_{2}\left[w_{2}, \ldots, w_{k-1}\right]$ and to consider $[\bar{f} \cdot g]_{n-k+x+1}$ as a linear combination of such polynomials.

Example

Consider $N_{4}\left(G_{18,3}\right)=\left\{w_{2}^{2} g_{16}, w_{3} g_{17}, w_{2} g_{18}\right\}$.
A linear combination of elements of this set is of the form $\alpha_{4} w_{2}^{2} g_{16}+\alpha_{3} w_{3} g_{17}+\alpha_{2} w_{2} g_{18}=[f \cdot g]_{20}$ for $f=\alpha_{4} w_{2}^{2}+\alpha_{3} w_{3}+\alpha_{2} w_{2}$. Instead of working with f, we take an arbitrary nonzero polynomial from $\mathbb{Z}_{2}\left[w_{2}\right]$ contained in dimension 4 , say $\beta_{4} w_{2}^{2}+\beta_{2} w_{2}+\beta_{0}$.

Linear independence of $N_{x}\left(G_{n, k}\right)$

This adjustment impels us to view every g_{i} as a polynomial in one indeterminate w_{k} with coefficients in the ring $\mathbb{Z}_{2}\left[w_{2}, \ldots, w_{k-1}\right]$ and to consider $[\bar{f} \cdot g]_{n-k+x+1}$ as a linear combination of such polynomials.

Example

Consider $N_{4}\left(G_{18,3}\right)=\left\{w_{2}^{2} g_{16}, w_{3} g_{17}, w_{2} g_{18}\right\}$.
A linear combination of elements of this set is of the form $\alpha_{4} w_{2}^{2} g_{16}+\alpha_{3} w_{3} g_{17}+\alpha_{2} w_{2} g_{18}=[f \cdot g]_{20}$ for $f=\alpha_{4} w_{2}^{2}+\alpha_{3} w_{3}+\alpha_{2} w_{2}$. Instead of working with f, we take an arbitrary nonzero polynomial from $\mathbb{Z}_{2}\left[w_{2}\right]$ contained in dimension 4, say $\beta_{4} w_{2}^{2}+\beta_{2} w_{2}+\beta_{0}$.
We just need to show that $\left[\left(\beta_{4} w_{2}^{2}+\beta_{2} w_{2}+\beta_{0}\right) \cdot g\right]_{20} \neq 0$.

Linear independence of $N_{x}\left(G_{n, k}\right)$

Example

Now observe

$$
\begin{array}{lr}
g_{16}=w_{2}^{8}+ & +w_{2}^{5} w_{3}^{2}+\cdots \\
g_{18}=w_{2}^{9}+ & \\
g_{20}=w_{2}^{10}+ & +w_{2}^{3} w_{3}^{4}+\cdots \\
\quad+w_{2} w_{3}^{6}+\cdots
\end{array}
$$

and it should be clear that $\left[\left(\beta_{4} w_{2}^{2}+\beta_{2} w_{2}+\beta_{0}\right) \cdot g\right]_{20} \neq 0$, unless $\beta_{4}=\beta_{2}=\beta_{0}=0$.

Conclusion

As the example illustrated, the main idea is to find intervals for i such that g_{i} viewed as polynomials of w_{k} are in this "echelon" form and then deriving the corresponding conditions for n, k, x. One such result is the following.

Theorem

Let $k \geq 3$ and $t \geq \max \left\{3, \log _{2}(k-1)\right\}$. For any $x \geq 0$ and n such that

$$
(k-1) \cdot 2^{t-1}+\frac{k-3}{k-1} \cdot 2^{t-1}+\frac{x}{k-1}-1<n \leq k \cdot 2^{t-1}-1-x
$$

we have

$$
\operatorname{charrank}\left(\widetilde{\gamma}_{n, k}\right) \geq n-k+x .
$$

Conclusion

For any $k \geq 3$ and $t \geq \max \left\{3, \log _{2}(k-1)\right\}$ let us denote $x_{k, t}$ the smallest positive integer such that $2^{t}-x_{k, t}$ is divisible by $k-1$. We define an integer

$$
n_{k, t}=k \cdot 2^{t-1}-\frac{2^{t}-x_{k, t}}{k-1}-1
$$

Theorem

For any $k \geq 3, t \geq \max \left\{3, \log _{2}(k-1)\right\}$ and $a \geq 0$, such that a satisfies $k a+x_{k, t}-1 \leq \frac{2^{t}-x_{k, t}}{k-1}$ we have

$$
\operatorname{cup}\left(\widetilde{G}_{n_{k, t}+a, k}\right) \leq 1+\frac{k\left(n_{k, t}-k\right)-\left(n_{k, t}-k+x_{k, t}\right)}{2} .
$$

Conclusion

Thank you.

