On the characteristic rank and cohomology of oriented Grassmann manifolds

Tomáš Rusin

January 17, 2019

Tomáš Rusin

On the characteristic rank of $\tilde{\gamma}_{n,k}$

January 17, 2019 1 / 18

Let us denote $G_{n,k}$ the Grassmann manifold of k-dimensional vector subspaces in \mathbb{R}^n , i.e. the space $O(n)/(O(k) \times O(n-k))$.

3

Let us denote $G_{n,k}$ the Grassmann manifold of k-dimensional vector subspaces in \mathbb{R}^n , i.e. the space $O(n)/(O(k) \times O(n-k))$. Let us denote $\widetilde{G}_{n,k}$ the *oriented* Grassmann manifold of *oriented* k-dimensional vector subspaces in \mathbb{R}^n , the space $SO(n)/(SO(k) \times SO(n-k))$.

We may suppose that $k \leq n - k$ for both of them.

Introduction

Cohomology ring of $G_{n,k}$

The cohomology ring of the Grassmann manifold $G_{n,k}$ is

$$H^*(G_{n,k};\mathbb{Z}_2)=\mathbb{Z}_2[w_1,w_2,\ldots,w_k]/I_{n,k},$$

where $\dim(w_i) = i$ and the ideal $I_{n,k}$ is generated by k homogeneous polynomials $\bar{w}_{n-k+1}, \bar{w}_{n-k+2}, \ldots, \bar{w}_n$, where each \bar{w}_i denotes the *i*-dimensional component of the formal power series

$$1+(w_1+w_2+\cdots+w_k)+(w_1+w_2+\cdots+w_k)^2+(w_1+w_2+\cdots+w_k)^3+\cdots$$

Each indeterminate w_i is a representative of the *i*th Stiefel-Whitney class $w_i(\gamma_{n,k})$ of the canonical *k*-plane bundle $\gamma_{n,k}$ over $G_{n,k}$.

・ロット 御り とうりょうり しつ

Characteristic rank

The cohomology ring of $G_{n,k}$ is fully generated by the Stiefel-Whitney classes of its canonical bundle. But the same is not true for the oriented Grassmann manifold $\tilde{G}_{n,k}$.

Characteristic rank

The cohomology ring of $G_{n,k}$ is fully generated by the Stiefel-Whitney classes of its canonical bundle. But the same is not true for the oriented Grassmann manifold $\tilde{G}_{n,k}$.

The notion of characteristic rank quantifies the degree up to which the cohomology ring is generated by Stiefel-Whitney classes.

Definition

Let X be a connected, finite CW–complex and ξ a vector bundle over X. The *characteristic rank* of the vector bundle ξ , denoted charrank(ξ), is the greatest integer q, $0 \le q \le \dim(X)$, such that every cohomology class in $H^j(X; \mathbb{Z}_2)$ for $0 \le j \le q$ can be expressed as a polynomial in the Stiefel–Whitney classes $w_i(\xi)$ of ξ .

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Let us recall the definition of the cup-length of a space as it turns out to be related to the characteristic rank.

Definition

For a path connected space X, we may define its \mathbb{Z}_2 -cup-length $\operatorname{cup}_{\mathbb{Z}_2}(X)$ as the greatest number r such that there exist cohomology classes $x_1, \ldots, x_r \in H^*(X; \mathbb{Z}_2)$ in positive dimensions such that $x_1 \cdots x_r \neq 0$.

For the oriented Grassmann manifold $\widetilde{G}_{n,k}$ and its canonical bundle $\widetilde{\gamma}_{n,k}$ we have

$$\exp(\widetilde{G}_{n,k}) \leq 1 + \frac{k(n-k) - \operatorname{charrank}(\widetilde{\gamma}_{n,k}) - 1}{2}$$

Characteristic rank of $\widetilde{\gamma}_{n,k}$

There is a covering projection $p: G_{n,k} \to G_{n,k}$, which is universal for $(n,k) \neq (2,1)$. To this 2-fold covering, there is an associated line bundle ξ over $G_{n,k}$, such that $w_1(\xi) = w_1(\gamma_{n,k})$, to which we have Gysin exact sequence

$$\stackrel{\psi}{\to} H^{j-1}(G_{n,k}) \stackrel{w_1}{\longrightarrow} H^j(G_{n,k}) \stackrel{p^*}{\longrightarrow} H^j(\widetilde{G}_{n,k}) \stackrel{\psi}{\longrightarrow} H^j(G_{n,k}) \stackrel{w_1}{\longrightarrow} H^{j+1}(G_{n,k}) \rightarrow$$

where $H^{j}(G_{n,k}) \xrightarrow{w_{1}} H^{j+1}(G_{n,k})$ is the homomorphism given by the cup product with the first Stiefel–Whitney class $w_{1}(\xi) = w_{1}(\gamma_{n,k})$.

Characteristic rank of $\widetilde{\gamma}_{n,k}$

There is a covering projection $p: \widetilde{G}_{n,k} \to G_{n,k}$, which is universal for $(n,k) \neq (2,1)$. To this 2-fold covering, there is an associated line bundle ξ over $G_{n,k}$, such that $w_1(\xi) = w_1(\gamma_{n,k})$, to which we have Gysin exact sequence

$$\stackrel{\psi}{\to} H^{j-1}(G_{n,k}) \stackrel{w_1}{\longrightarrow} H^j(G_{n,k}) \stackrel{p^*}{\longrightarrow} H^j(\widetilde{G}_{n,k}) \stackrel{\psi}{\longrightarrow} H^j(G_{n,k}) \stackrel{w_1}{\longrightarrow} H^{j+1}(G_{n,k}) \rightarrow$$

where $H^{j}(G_{n,k}) \xrightarrow{w_{1}} H^{j+1}(G_{n,k})$ is the homomorphism given by the cup product with the first Stiefel–Whitney class $w_{1}(\xi) = w_{1}(\gamma_{n,k})$. Since $p^{*}\gamma_{n,k} \cong \widetilde{\gamma}_{n,k}$, the image $\operatorname{Im}(p^{*} \colon H^{j}(G_{n,k}) \to H^{j}(\widetilde{G}_{n,k}))$ is a subspace of the \mathbb{Z}_{2} -vector space $H^{j}(\widetilde{G}_{n,k})$ consisting only of cohomology classes, which can be expressed as polynomials in the Stiefel–Whitney characteristic classes of $\widetilde{\gamma}_{n,k}$.

This implies that the characteristic rank of $\widetilde{\gamma}_{n,k}$ is equal to the greatest integer q, such that the homomorphism $p^* \colon H^j(G_{n,k}) \to H^j(\widetilde{G}_{n,k})$ is surjective for all j, $0 \le j \le q$, or equivalently, that the homomorphism $w_1 \colon H^j(G_{n,k}) \longrightarrow H^{j+1}(G_{n,k})$ is injective for all j, $0 \le j \le q$.

Homomorphism $w_1 : H^j(G_{n,k}) \longrightarrow H^{j+1}(G_{n,k})$

Recall that

$$H^*(G_{n,k}) = \mathbb{Z}_2[w_1, w_2, \ldots, w_k]/(\bar{w}_{n-k+1}, \ldots, \bar{w}_n).$$

Since in the quotient ring there are no relations in dimensions n - k or lower, we always have charrank $(\tilde{\gamma}_{n,k}) \ge n - k - 1$.

Homomorphism $w_1 : H^j(G_{n,k}) \longrightarrow H^{j+1}(G_{n,k})$

Recall that

$$H^*(G_{n,k}) = \mathbb{Z}_2[w_1, w_2, \ldots, w_k]/(\bar{w}_{n-k+1}, \ldots, \bar{w}_n).$$

Since in the quotient ring there are no relations in dimensions n - k or lower, we always have $\operatorname{charrank}(\widetilde{\gamma}_{n,k}) \ge n - k - 1$. Let $g_i \in \mathbb{Z}_2[w_2, \ldots, w_k]$ be the reduction of the polynomial \overline{w}_i modulo w_1 . Denote $g_i(\gamma_{n,k})$ the corresponding cohomology class in $H^i(G_{n,k})$. Homomorphism $w_1 : H^j(G_{n,k}) \longrightarrow H^{j+1}(G_{n,k})$

Recall that

$$H^*(G_{n,k}) = \mathbb{Z}_2[w_1, w_2, \ldots, w_k]/(\bar{w}_{n-k+1}, \ldots, \bar{w}_n).$$

Since in the quotient ring there are no relations in dimensions n - k or lower, we always have $\operatorname{charrank}(\widetilde{\gamma}_{n,k}) \ge n - k - 1$. Let $g_i \in \mathbb{Z}_2[w_2, \ldots, w_k]$ be the reduction of the polynomial \overline{w}_i modulo w_1 . Denote $g_i(\gamma_{n,k})$ the corresponding cohomology class in $H^i(G_{n,k})$. For $i \in \{n - k + 1, n - k + 2, \ldots, n\}$ the cohomology classes $g_i(\gamma_{n,k})$ lie in the image of $w_1 : H^{i-1}(G_{n,k}) \longrightarrow H^i(G_{n,k})$.

Homomorphism $w_1: H^j(G_{n,k}) \longrightarrow H^{j+1}(G_{n,k})$

By estimating the dimension of the image of the homomorphism $w_1: H^j(G_{n,k}) \longrightarrow H^{j+1}(G_{n,k})$ we obtain the following proposition.¹

Proposition

For a non-negative integer x, we associate with $H^{n-k+x+1}(G_{n,k})$ $(2 \le k \le n-k)$ the set

$$N_{x}(G_{n,k}) := \bigcup_{i=0}^{k-1} \{w_{2}^{b_{2}} \cdots w_{k}^{b_{k}} g_{n-k+1+i}; 2b_{2} + 3b_{3} + \cdots + kb_{k} = x - i\}.$$

If $x \leq n - k - 1$ and the set $N_x(G_{n,k})$ is linearly independent, then

$$w_1 \colon H^{n-k+x}(G_{n,k}) \longrightarrow H^{n-k+x+1}(G_{n,k})$$

is a monomorphism.

Tomáš Rusin

On the characteristic rank of $\tilde{\gamma}_{n,k}$

January 17, 2019 9 / 18

The sequence of polynomials g_i associated with $G_{n,k}$ is uniquely determined by k and it satisfies the recurrence formula

Recurrence formula

 $g_i = w_2 g_{i-2} + w_3 g_{i-3} + \cdots + w_k g_{i-k}.$

Every $g_i \in \mathbb{Z}_2[w_2, \ldots, w_k]$ is a weighted homogeneous polynomial corresponding to a class in $H^i(G_{n,k})$. For any such polynomial we will simply say that it *lies in the dimension i*. Each element of the set $N_x(G_{n,k})$ represents a polynomial lying in the dimension n - k + x + 1.

Any linear combination of elements from $N_{x}(G_{n,k})$ can be written as

$$f_{x}g_{n-k+1}+\cdots+f_{x-k+1}g_{n}, \qquad (1)$$

where every $f_j \in \mathbb{Z}_2[w_2, \ldots, w_k]$ lies in dimension *j*.

- 2

Any linear combination of elements from $N_x(G_{n,k})$ can be written as

$$f_{x}g_{n-k+1}+\cdots+f_{x-k+1}g_{n}, \qquad (1)$$

where every $f_j \in \mathbb{Z}_2[w_2, \ldots, w_k]$ lies in dimension j. We can express this sum using products of formal power series. Consider an element g in the ring of formal power series $\mathbb{Z}_2[[w_2, \ldots, w_k]]$ given by

$$\mathbf{g}=\sum_{i=0}^{\infty}g_i=1+g_1+g_2+\cdots.$$

For any $f \in \mathbb{Z}_2[w_2, \ldots, w_k]$ denote $[f \cdot g]_i$ the sum of all terms of formal power series $f \cdot g$ lying in dimension *i*. The linear combination (1) is now exactly $[f \cdot g]_{n-k+x+1}$ for $f = f_x + \cdots + f_{x-k+1}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Thus linear independence of the set $N_x(G_{n,k})$ is equivalent to the condition that for any nonzero polynomial $f = f_x + \cdots + f_{x-k+1}$ we have $[f \cdot g]_{n-k+x+1} \neq 0$.

Thus linear independence of the set $N_x(G_{n,k})$ is equivalent to the condition that for any nonzero polynomial $f = f_x + \cdots + f_{x-k+1}$ we have $[f \cdot g]_{n-k+x+1} \neq 0$. To progress further we need to allow for polynomials that are not weighted homogeneous.

Definition

Let $i \in \mathbb{N}$ and $f \in \mathbb{Z}_2[w_2, \ldots, w_k]$ be a polynomial that is a sum of polynomials each of which lies in dimension $j \leq i$. We will say that such a polynomial f is *contained in dimension* i.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

In this setting the recurrence relation for g_i translates to the following.

Definition

Suppose $f \in \mathbb{Z}_2[w_2, \ldots, w_k]$. Let us denote \overline{f} the polynomial obtained from f by replacing each instance of w_k with the sum $1 + w_2 + \cdots + w_{k-1}$.

Lemma

Suppose $f \in \mathbb{Z}_2[w_2, ..., w_k]$. If f is of the form $f = f_x + f_{x-1} + \cdots + f_{x-k+1}$, where every f_j is lying in dimension j, then $f \neq 0$ implies $\bar{f} \neq 0$. If f is contained in dimension i, then \bar{f} is as well, and $[f \cdot g]_i = [\bar{f} \cdot g]_i$.

Hence, to prove linear independence of $N_x(G_{n,k})$, it is sufficient to show that for any nonzero polynomial in indeterminates w_2, \ldots, w_{k-1} contained in dimension x we have $[\bar{f} \cdot g]_{n-k+x+1} \neq 0$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

This adjustment impels us to view every g_i as a polynomial in one indeterminate w_k with coefficients in the ring $\mathbb{Z}_2[w_2, \ldots, w_{k-1}]$ and to consider $[\bar{f} \cdot g]_{n-k+x+1}$ as a linear combination of such polynomials.

This adjustment impels us to view every g_i as a polynomial in one indeterminate w_k with coefficients in the ring $\mathbb{Z}_2[w_2, \ldots, w_{k-1}]$ and to consider $[\bar{f} \cdot g]_{n-k+x+1}$ as a linear combination of such polynomials.

Example

Consider
$$N_4(G_{18,3}) = \{w_2^2 g_{16}, w_3 g_{17}, w_2 g_{18}\}.$$

A linear combination of elements of this set is of the form
 $\alpha_4 w_2^2 g_{16} + \alpha_3 w_3 g_{17} + \alpha_2 w_2 g_{18} = [f \cdot g]_{20}$ for $f = \alpha_4 w_2^2 + \alpha_3 w_3 + \alpha_2 w_2.$

This adjustment impels us to view every g_i as a polynomial in one indeterminate w_k with coefficients in the ring $\mathbb{Z}_2[w_2, \ldots, w_{k-1}]$ and to consider $[\bar{f} \cdot g]_{n-k+x+1}$ as a linear combination of such polynomials.

Example

Consider $N_4(G_{18,3}) = \{w_2^2 g_{16}, w_3 g_{17}, w_2 g_{18}\}.$ A linear combination of elements of this set is of the form $\alpha_4 w_2^2 g_{16} + \alpha_3 w_3 g_{17} + \alpha_2 w_2 g_{18} = [f \cdot g]_{20}$ for $f = \alpha_4 w_2^2 + \alpha_3 w_3 + \alpha_2 w_2.$

Instead of working with f, we take an arbitrary nonzero polynomial from $\mathbb{Z}_2[w_2]$ contained in dimension 4, say $\beta_4 w_2^2 + \beta_2 w_2 + \beta_0$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

This adjustment impels us to view every g_i as a polynomial in one indeterminate w_k with coefficients in the ring $\mathbb{Z}_2[w_2, \ldots, w_{k-1}]$ and to consider $[\bar{f} \cdot g]_{n-k+x+1}$ as a linear combination of such polynomials.

Example

Consider
$$N_4(G_{18,3}) = \{w_2^2 g_{16}, w_3 g_{17}, w_2 g_{18}\}.$$

A linear combination of elements of this set is of the form
 $\alpha_4 w_2^2 g_{16} + \alpha_3 w_3 g_{17} + \alpha_2 w_2 g_{18} = [f \cdot g]_{20}$ for $f = \alpha_4 w_2^2 + \alpha_3 w_3 + \alpha_2 w_2.$

Instead of working with f, we take an arbitrary nonzero polynomial from $\mathbb{Z}_2[w_2]$ contained in dimension 4, say $\beta_4 w_2^2 + \beta_2 w_2 + \beta_0$.

We just need to show that $[(\beta_4 w_2^2 + \beta_2 w_2 + \beta_0) \cdot g]_{20} \neq 0.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example

Now observe

$$g_{16} = w_2^8 + \qquad + w_2^5 w_3^2 + \cdots$$

$$g_{18} = w_2^9 + \qquad \qquad + w_2^3 w_3^4 + \cdots$$

$$g_{20} = w_2^{10} + \qquad \qquad + w_2 w_3^6 + \cdots$$

and it should be clear that $[(\beta_4 w_2^2 + \beta_2 w_2 + \beta_0) \cdot g]_{20} \neq 0$, unless $\beta_4 = \beta_2 = \beta_0 = 0$.

イロト イポト イヨト イヨト 二日

Conclusion

As the example illustrated, the main idea is to find intervals for i such that g_i viewed as polynomials of w_k are in this "echelon" form and then deriving the corresponding conditions for n, k, x. One such result is the following.

Theorem

Let $k \ge 3$ and $t \ge \max \{3, \log_2(k-1)\}$. For any $x \ge 0$ and n such that

$$(k-1) \cdot 2^{t-1} + \frac{k-3}{k-1} \cdot 2^{t-1} + \frac{x}{k-1} - 1 < n \le k \cdot 2^{t-1} - 1 - x$$

we have

$$\operatorname{charrank}(\widetilde{\gamma}_{n,k}) \geq n-k+x.$$

náš	

イロト 不得 トイヨト イヨト 二日

Conclusion

For any $k \ge 3$ and $t \ge \max \{3, \log_2(k-1)\}$ let us denote $x_{k,t}$ the smallest positive integer such that $2^t - x_{k,t}$ is divisible by k - 1. We define an integer

$$n_{k,t} = k \cdot 2^{t-1} - \frac{2^t - x_{k,t}}{k-1} - 1.$$

Theorem

For any $k \ge 3$, $t \ge \max \{3, \log_2(k-1)\}$ and $a \ge 0$, such that a satisfies $ka + x_{k,t} - 1 \le \frac{2^t - x_{k,t}}{k-1}$ we have

$$\operatorname{cup}(\widetilde{G}_{n_{k,t}+a,k}) \leq 1 + \frac{k(n_{k,t}-k) - (n_{k,t}-k+x_{k,t})}{2}$$

Conclusion

Thank you.

Tomáš Rusin

On the characteristic rank of $\widetilde{\gamma}_{n,k}$

January 17, 2019 18 / 18

æ

A D N A B N A B N A B N