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ABSTRACT
Estimation of design rainfall in unobservable places is important in hydrological engineering. The aim of this
paper is to use genetic algorithms to find the optimal global and local shape parameters of radial basis functions
(RBFs) to create an interpolation model to estimate scaling exponents of short term rainfalls across selected regions
of Slovakia. Scaling exponents can be used later to estimate rainfalls intensity in places without observations. In
this paper, we have used interpolation methods based on RBFs to model interpolation surfaces. We investigate the
properties of shape parameters in RBFs, and we test some methods for finding an optimal shape parameter. The
choice of the best basis function along with the optimal shape parameter has a significant impact on the accuracy
of the interpolation models which best approximate the real model. We have found that Hardy’s multiquadrics
interpolant with the optimal local shape parameters can be used for estimation the rainfall intensities in areas
without direct observation.
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1 INTRODUCTION

In hydrology, engineering designers often face the pro-
blem of unreliable estimation of design short term rain-
fall intensities in unobservable places, or insufficiently
long time series of observations. Regionalization met-
hods are often used to solve this problem. These met-
hods use available spatial information, and they conse-
quently achieve reliable estimates of design values wit-
hout direct observation [Koh16].

This paper gives a new method to estimate scaling ex-
ponents using interpolation methods based on radial
basis functions (RBFs) with optimal global/local shape
parameters. Our new method has not yet been applied
to such extent. Our aim is to create an appropriate mo-
del for spatial estimation of rainfall intensities in places
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without direct observation for selected months across
selected regions in Slovakia.

From the mathematical point of view, we need to con-
struct the interpolation surface as long as we have a few
of data points arranged in an irregular mesh. We at-
tempt to achieve high accuracy of used interpolation
surface for data points, in which we have no observa-
tions.

From literature, RBFs are known as a very popular
interpolation tool for solving our designed problem
due to their simplicity and ability to accurately ap-
proximate underlying multidimensional scattered data.
This methodology is competitive, and it gives a high
numerical accuracy when we compare it with other
interpolating methods. Some of the most recent ap-
plications of RBFs include, for example, cartography,
neural networks, medical imaging, numerical solution
of partial differential equations [Flw09], [Dyn87],
[Dyn89], [Isk03], [Ska13]. Interpolation methods
based on RBFs are also used in BSDF interpo-
lation [WKB12], [Ward14]. Hierarchical genetic
algorithms are proposed in [TR15] to tackle the
problem of automatic curve fitting. In this paper,
authors have used only the Gaussian RBF, they have
not compared the global shape parameter with the local

ISSN 2464-4617(print) ISSN 2464-4625(CD) CSRN 2702 Computer Science Research Notes
http://www.WSCG.eu

Short Papers Proceedings 59 ISBN 978-80-86943-50-3



ones and as a test data they have used only analytically
defined one dimensional functions. Rainfall approxi-
mation of the sparse rainfall data using RBFs is solved
in [PC15], [PC16a] and [PC16b].
Many RBFs contain a free shape parameter c (see Ta-
ble 1). The choice of the basis function and shape
parameter has a significative impact on the accuracy
of the method. In most papers authors choose this
shape parameter by trial. Rippa [Rip99] has descri-
bed a numerical algorithm to estimate the best value
for shape parameter in radial basis interpolation using
Leave One Out Cross Validation (LOOCV). Fasshauer
and Zhang [FaZh07] used iterative approximative mo-
ving least squares approximation and RBFs pseudo-
spectral method to estimate an appropriate shape pa-
rameter. Mongillo [Mon11] examined how to choose
RBFs and shape parameters in a scattered data approx-
imation.
Our paper introduces the idea of a global and local
shape parameters estimation using genetic algorithms
for scattered data. We discuss our method based on Le-
ave Multiple Out Cross Validation (LMOCV) to esti-
mate the best shape parameter(s).
The paper is organized as follows. Section 2 shortly
describes the principle of the used interpolation met-
hods based on RBFs. Section 3 presents our metho-
dology and data. We discuss how an LMOCV stra-
tegy can be used in the context of finding the optimal
shape parameter(s). Finally, section 4 presents our re-
sults. A comparison of the LOOCV and LMOCV met-
hod has been made. We have used root-mean-square er-
ror (RMSE) to compare selected interpolation methods
based on RBFs.

2 INTERPOLATION METHODS BA-
SED ON RBFS

The research of RBFs helps us understand how we can
use these functions to solve practical problems. RBFs
are preferred for image warping, geodesy, geography,
digital terrain modeling, hydrology, etc. A good review
of the theory of RBFs is given by Hardy [Har90], Po-
well [Pow91].
Let us have a set X of N different input points X =
{x1, . . . ,xN | xi ∈ R2} with rainfall intensity values
F = { f1, . . . , fN | fi ∈R}. We search for such function
S : R2 → R, for which the interpolation conditions are
true:

S(xi) = fi, i = 1, . . . ,N. (1)

We can write the interpolation function S(x) in the fol-
lowing form [Rip99]:

S(x) =
N

∑
i=1

λiΦ(‖x−xi‖) (2)

where x ∈ R2, Φ(r) is a fixed real-valued RBF and ‖·‖
denotes the Euclidean norm.

The solution of the above interpolation conditions (1) is
equivalent to the solution of a linear system of equati-
ons:

A ·λλλ = f, A = Ai, j = Φ(
∥∥x j−xi

∥∥) (3)

for the vector λλλ ∈ R2 of unknown coefficients. This
interpolation problem is solvable if and only if matrix
A is nonsingular. The general conditions on S(x) which
guarantee nonsingularity of A are given in [Mic86], and
they can be checked for many radial basis functions. In
particular, these conditions are fulfilled for the choices
of the function Φ(r) given in Table 1.

Radial basis function Φ(r)
Polyharmonic splines (PHS) r3

Thin plate splines (TPS) (1/2)r2 logr2

Gauss function (GAUSS) e−r2/2c2

Hardy’s multiquadric (HMQ)
√

c2 + r2

Inverse multiquadric (IMQ) 1/
√

c2 + r2

Inverse quadric (IQ) 1/(c2 + r2)

Table 1: Commonly used types of radial basis functions

The RBFs listed in Table 1 contain a shape parame-
ter c that must be specified by the user. It is well
known [Fra82], [Rip99], [Mon11] that the accuracy of
the RBFs interpolants depends heavily on the choice of
the parameter c. A smaller value of the shape parameter
c corresponds to a surface with a higher curvature and
a higher value of the shape parameter c corresponds to
a flatter surface with a smaller curvature. The global
shape parameter influences the whole surface, but lo-
cal shape parameters influence the shape of the surface
only in the neighborhood of each interpolated point.

2.1 Thin plate splines
One of the most commonly used interpolation methods
based on RBFs is thin plate splines method. This met-
hod adds a polynomial term into equation (2) and does
not contain any shape parameter.

We can write the TPS interpolating function S(x) in the
form [Fog96]:

S(x) = S(x,y) = c1 + c2x+ c3y+
1
2

N

∑
i=1

λir2
i log(r2

i ),

(4)

where [x,y] ∈ R2, r2
i = (x − xi)

2 + (y − yi)
2 and

c1, c2, c3, λi ∈ R are unknown coefficients. The
unknown values λi, i = 1, . . . ,N, have to satisfy the
boundary conditions:

N

∑
i=1

λi = 0,
N

∑
i=1

λixi = 0. (5)
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Applying interpolation conditions (1) together with
boundary conditions (5), we can compute the unknown
values using a system of equations:

A ·L = F,

where

A=



0 0 0 1 1 · · · 1
0 0 0 x1 x2 · · · xn
0 0 0 y1 y2 · · · yn
1 x1 y1 0 r2

21 log(r2
21) · · · r2

n1 log(r2
n1)

1 x2 y2 r2
12 log(r2

12) 0 · · · r2
n2 log(r2

n2)
...

...
...

...
...

. . .
...

1 xn yn r2
1n log(r2

1n) r2
2n log(r2

2n) · · · 0



L =



c0
c1
c2

λ1/2
λ2/2

...
λN/2


, F =



0
0
0
f1
f2
...
fN


and r2

i j = r2
ji = (x j− xi)

2 +(y j− yi)
2.

2.2 Hardy’s multiquadrics with local
shape parameters

This method is very similar to the previous method,
but it uses different RBFs, does not have a polynomial
term and uses local shape parameters. For our interpo-
lation problem, we obtain the following interpolation
function:

S(x) = S(x,y) =
N

∑
i=1

λi

√
c2

i + r2
i . (6)

The local shape parameters ci significantly change the
shape of the resulting interpolation surface. In gene-
ral, a smaller value of the parameter ci creates so-called
“sharp extremes” at point xi in the graph of the function,
while its greater value “smoothes” the function. Using
local shape parameters instead of one global parameter
allows not only to change the shape of the interpolation
surface at each interpolation point but also can increase
accuracy of the created interpolation model. Introdu-
cing local shape parameters has one drawback - matrix
that is created by RBFs (see equation (3)) is not sym-
metric anymore, which leads to the problem of finding
optimal local shape parameters ci using standard opti-
mization methods.

3 METHODOLOGY
Different RBFs and their different shape parameters
give different interpolation surfaces for the same data
set. Finding the best RBF and the best estimation of the
shape parameter(s) that produces the most accurate re-
sults is one of the topics of our paper. In this section we
investigate cross validation methods for optimizing the
shape parameter(s) with respect to the error in interpo-
lation methods based on RBFs.

We decide to exclude at most K data points in one step
(interpolation function calculation) from a data set with
sample size N (number of interpolation points), where
K corresponds to approximately 10% of the sample size
N.

3.1 Cross validation methods
Cross validation methods are used for evaluating the
accuracy of the created model (e.g. interpolation
function) by splitting the input data set into validation
and training data. The model is created from the
training data so that it fits the validation data with some
small error.

In practical use, there are several rounds of cross vali-
dations using different partitions of the data set. The
resulting statistical measure giving the accuracy of the
model is given as the average of the errors calculated in
the individual rounds.

Let M (number of rounds) be the number of the sets
of points indices of the excluded points. For LOOCV
method, we have M = N and for LMOCV method, we
have M given in advance such that M > N.

Leave one out cross validation (LOOCV)

LOOCV method uses 1 element as validation data and
N−1 remaining elements as training data, from which
we get N singleton sets Ip = {p} , p = 1, . . . ,N of indi-
ces of excluded points for model determination.

Leave multiple out cross validation (LMOCV)

LMOCV method uses a random number of elements for
the validation data, while their number is limited by in
advance given value K.

Let set Ip =
{

pi1, . . . ,p inp

}
denote the p-th set of indi-

ces of the excluded data points for p = 1, . . . ,M, where
pink is a random integer, 1≤ pink≤ N, while cardinality∣∣Ip
∣∣ (number of elements) of the set of indices varies

from 1 to K.

3.2 Shape parameter estimation
Let S(p)(x) be the p-th interpolant of the reduced
data set obtained by removing np points xpi1 , . . . ,xpinp
and the corresponding data values fpi1 , . . . , fpinp from
the original data set. Our algorithm estimates the
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shape parameter c by minimizing the error vectors
pεεε = (pe1, . . . ,

p enp)
T, where

pe j = S(p)(x j)− f j, j ∈ Ip, p = 1, . . . ,M. (7)

The error vectors are calculated by using standard
LOOCV or our proposed LMOCV method. We take
RMSE as a measure of the quality how well the
interpolation function calculated from reduced data
set fits the interpolation function created from all data
points.

RMSE for LOOCV method is defined by:

RMSE(c) =

√
∑

N
j=1
[
S(p)(x j)− f j

]2
N

, (8)

RMSE for LMOCV method is defined by:

RMSE(c) =

√√√√∑
M
p=1(∑ j∈Ip

[
S(p)(x j)− f j

]2
)

∑
M
p=1
∣∣Ip
∣∣ . (9)

Global shape parameter estimation

The optimal value of the global shape parameter c is
defined as the value of c that minimizes RMSE(c). Any
standard numerical estimation method can be used for
finding the optimal shape parameter.

Local shape parameters estimation

Both previously defined RMSE measures can be used
for local shape parameters estimation, with the only dif-
ference that vector c = (c1, . . . ,cN) of the local shape
parameters ci (see Section 2.2) is used instead of one
global parameter c.

We use a genetic algorithm because standard optimi-
zation methods like quasi-Newton methods are not ro-
bust enough when searching the optimal vector of local
shape parameters.

4 DATA AND EMPIRICAL RESULTS
In order to demonstrate the functionality of our
LMOCV method for computing the interpolation
function, we have used 5 sample datasets that consist
of scaling exponents of maximum rainfall intensities
with duration between 5 and 1440 minutes (short–term
rainfall) for the warm season, from April to September
in 34 rain gauge stations measured in Slovakia. The
rain gauge stations are summarized in Table 2 and the
area of the three regions is displayed in Figure 1.

During April, it was possible to measure rainfall only
for N = 29 rainfall stations, while in other months we
have recorded the scale exponent for N = 34 rainfall
stations.

Region Rain gauge stations

1
Myjava, Senica, Kuchyňa - Nový Dvor,
Jaslovské Bohunice, Oravská Lesná,
Čadca, Piešt’any, Prievidza

2

Bratislava - Koliba, Bratislava - letisko,
Nitra - Vel’ké Janíkovce, Telgárt,
Sliač, Bol’kovce, Dolné Plachtince,
Bzovík, Kamenica nad Cirochou, Somotor,
Rožňava, Lom nad Rimavicou,
Štós - kúpele, Moldava nad Bodvou,
Hurbanovo, Košice, Liptovská Osada

3
Javorina, Červený Kláštor, Poprad, Švedlár,
Tatranská Lomnica, Medzilaborce, Liptovský
Hrádok, Štrbské Pleso, Jakubovany

Table 2: Selected Slovakia regions with the rain gauge
stations distribution
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Figure 1: Map of the three selected regions and rain
gauge stations

For our LMOCV method, we set K = 4, the maximum
number of excluded data points in one step of inter-
polation function S(p)(x) calculation. We have created
M = 120 sets Ip of excluded indices of rainfall stations.

We have discovered that searching the local shape
parameters using classical optimization methods like
quasi-Newton methods is inappropriate because these
methods have found a local minimum instead of the
global minimum. Therefore, we have decided to
use genetic algorithms to find the global minimum.
We have used the GA (see [Scr11], [Scr16]) and the
GENOUD (see [Meb11]) genetic algorithm which
are available as packages for R (R is a programming
language and software environment for statistical
computing). These packages combine the genetic
algorithms approach with the standard optimization
approach using BFGS optimization method and others.

We present the results of numerical experiments in-
volving interpolation of the given datasets by polyhar-
monic splines, thin plate splines, Gaussian function,
Hardy’s multiquadric, inverse multiquadric and inverse
quadric interpolants. We have compared the LOOCV
and LMOCV method for excluding data points. Some
selected results of the obtained interpolation surfaces
for various datasets and various interpolation methods
are shown in Figures 4–8.
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Estimating the global shape parameter c for Hardy’s
multiquadrics is not suitable in general because of a
very high curvature (peaks) at input points xi on the
created interpolation surfaces (see Figure 4). This un-
desirable shape is caused by the fact that the estima-
ted shape parameter c is zero because of numerical
instability of calculations in the optimization process.
Consequently, we decide to find local shape parameters
c = (c1, . . . ,cN) using genetic algorithms and with the
LMOCV method, see Figure 5b.

In case of the inverse multiquadrics (see Figure 6) and
other RBFs from Table 1, we do not face a problem with
finding the optimal value of the global shape parameter.
Except Hardy’s multiquadrics, there is no problem with
numerical instability for other RBFs. However, their
accuracy is worse than that of Hardy’s multiquadrics.

An example of interpolation surface created by the TPS
method which does not need to estimate shape parame-
ters is shown in Figure 7.

Table 3 and Figure 2 present RMSE calculated accor-
ding to formula (8) and formula (9) for the optimal
(best) global shape parameter c for interpolation met-
hods based on RBFs from Table 1. We can see that
the best accuracy is obtained for Hardy’s multiquadric
interpolant, the thin plate spline is second in order.
The worst results have been achieved for the Gaussian
RBF. As we can see, the LMOCV method gives smaller
RMSE in comparison to the LOOCV method.

Figure 3 shows dependence between the RMSE and the
global shape parameter c for dataset June–July while
using Hardy’s multiquadrics interpolation function.
The LOOCV method gives the optimal value of the
shape parameter c equal to 0.0854, and the LMOCV
method gives the optimal value of the shape parameter
c equal to 0.0621.

In estimating the global shape parameter for the data-
set April, we would not be able to find its appropriate
value due to numerical instability (see Figure 4). Even
when we have used Q-R decomposition and SVD met-
hod for matrix equation calculation, we have experien-
ced the same problem. In the optimization procedure,
we have tried many statistical measures for the error
vectors computation (MSE, MAE, MAPE, MASE and
SMAPE) but we have not obtained acceptable results.
We have decided to find optimal local shape parameters
instead of the global parameter using the LOOCV and
our proposed LMOCV method.

The LOOCV method for local shape parameter estima-
tion gives low RMSE values (see Table 4), but the obtai-
ned function often oscilates (see Figure 5a) and has ex-
treme values at the surface border. Using the LMOCV
method, the RMSE is slightly higher, but the surface ap-
pears to be normal (see Figure 5b). Based on the above
experiments, we propose that the value of the parame-

ter c can be estimated by minimizing RMSE(c) using
the LMOCV method.

5 CONCLUSION
We have found that the optimization procedure for esti-
mating the global shape parameter of Hardy’s multiqua-
drics interpolation function gives approximately zero
value for many data sets. This zero value is unaccep-
table because it creates an inappropriate surface shape.
Therefore, we have decided to use and estimate the lo-
cal shape parameters. Classical optimization methods
for the local shape parameters estimation is inapropriate
because these methods rapidly converge to a local opti-
mum. We have consequently decided to use two genetic
algorithms - GA and GENOUD. Both algorithms com-
bine genetic algorithms with the standard optimization
method BFGS. We have also found that optimization
process in the GENOUD package converges faster than
in the GA package. Because standard LOOCV (Leave
One Out Cross Validation) method for the model crea-
tion did not give good results for local shape parame-
ters estimation, we have proposed the LMOCV (Leave
Multiple Out Cross Validation) method.

Figure 5 and Table 4 show that the use of the optimal lo-
cal shape parameters creates a smooth surface and gives
lower RMSE values than the use of one global shape
parameter. We conclude Hardy’s multiquadrics inter-
polant with local shape parameters calculated using our
proposed LMOCV method can be subsequently used in
estimating the rainfall intensities in Slovakia, especially
in areas without direct observation.
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(a) LOOCV method, c = 1.0e−10 (b) LMOCV method, c = 1.0e−10

Figure 4: Dataset April: HMQ interpolation function with the optimal global shape parameter

(a) LOOCV method (b) LMOCV method

Figure 5: Dataset April: HMQ interpolation function with the optimal local shape parameters

(a) LOOCV method, c = 0.148 (b) LMOCV method, c = 0.143

Figure 6: Dataset April: IMQ interpolation function with the optimal global shape parameter

(a) LOOCV method (b) Convex hull

Figure 7: Dataset April: TPS interpolation function with its top view

(a) LOOCV method, c = 0.0854 (b) LMOCV method, c = 0.0621

Figure 8: Dataset June–July: HMQ interpolation function with the optimal global shape parameter
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