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ABSTRACT
Using GPS modules it is easy to obtain 3D data for areas that have not been digitized yet. Such terrain data are
usually not arranged in a grid, and therefore we have to use scattered data interpolation methods. The aim of the
paper is to create a digital terrain model from 3D data using modifications of known methods. Sibson interpolation
method is often used when we need to interpolate large data sets. This method has low memory requirements, it
is sufficiently fast, but creates undesired surface artefacts. Our aim is to have the resulting interpolation surface as
similar as possible to the original surface. We have decided to replace the heights at specified points by local func-
tions. We use biquadratic and bicubic polynomials, Hardy’s multiquadrics and thin plate spline as local functions.
In the paper, we have evaluated the time requirements and the accuracy with which the interpolated area matches
the actual 3D data on 2 terrain samples (the Little Carpathians and a small part of the Little Carpathians).

Keywords
Digital terrain model, Radial basis functions, Inverse distant weights, Thin plate spline, Natural neighbours, Sibson
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1 INTRODUCTION

Digital terrain model (DTM) can be used in many ar-
eas and applications. It is commonly used in urban
planning, hydrology, geosciences, for investigating soil
erosion, modelling of movement of avalanches, army
applications, graphics information systems, creation of
topographic maps and similarly. DTM can be under-
stood as a 3D representation of a part of the Earth sur-
face in digital format. It is commonly created from
a large amount of 3D points in the form of surfaces,
which are created using interpolation and approxima-
tion functions. These 3D points are obtained, for exam-
ple, using stereophotogrammetry, laser scanning and
radargrametry.

Creating of digital terrain from scattered data is still an
interesting area of research. This is suggested by sev-
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eral comparative studies that we can find currently in
literature.

In our research, we have decided to use local inter-
polants, which replace the specified height points that
are used in creating the terrain model. We want to im-
prove the accuracy of methods using the weighted aver-
age and remove shape artefacts that these methods pro-
duce in the final models. We want to take advantage
of their algorithmic simplicity and their speed of cal-
culation. In conclusion, we show that the use of local
functions is meaningful, even at the cost of slightly in-
creased computational time. We consider radial basis
functions (RBF) to be the best local functions, which
are currently used in many areas of research.

2 RELATED WORK
There are several methods that can be used to create a
DTM from scattered data. In most cases interpolation
methods are used. It is then possible to calculate the
height value at any point of the considered area.

The most commonly used methods are based on trian-
gulation entry points, the weighted average methods,
methods using radial basis functions and others. Less-
known techniques use, for example, dividing the input
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data into areas using local interpolants or neural net-
works. There are also approaches that use a combina-
tion of several methods.

For the methods using triangular irregular networks
(TIN), one first constructs a suitable triangulation from
the input data, for example, Delaunay triangulation.
Methods which use a piecewise continuous interpolant
can be used afterwards, for example, Bezier patches in
case of Clough-Tocher [Hug04] or Powell-Sabin [PS77]
method. Further, one can use a triangular network
method called triangle based blending (TBB) [GS13,
DG02, Ami02], which uses the weighted average of
three functions from a preselected class of local func-
tions interpolating the corresponding vertex of the tri-
angle and its nearest neighbours. Triangular network is
also used by a method described earlier [HZDS01], in
which one first constructs a uniform triangular network,
and local approximation polynomials (Bezier triangu-
lar patches) are calculated using the method of least
squares. The resulting spline function is then created
using a combination of these polynomials with the use
of Bernstein-Bezier smoothness conditions. Among the
methods using triangular networks, we can also use
a method of the natural neighbours (Sibson’s inter-
polant) [DG02], which uses Voronoi diagram, which is
the dual graph to the Delaunay triangulation. The func-
tion value (height at the searched point) is given by the
weighted average of local height values of the relevant
vertices.

Among the methods using only the weighted average,
Shepard’s method also known as the Inverse Distance
Weighting (IDW) is the most famous [AAAC05, GG13,
GS13, Hu13, Hug04]. Since Shepard’s method does not
give good results, its modification is used more often.
The modification uses local interpolant calculated by
the method of least squares [GS13].

To create a model of the terrain, RBF methods are prob-
ably the ones used the most often [AAAC05, CL12,
CL13, GG13, GS13, Hu13, Hug04, MS16, PGTG04,
SS09]. Thin plate splines (TPS) and Hardy’s multiquar-
ics (HMQ) are the most famous from this class of func-
tions. However, the disadvantage of these methods is
that for their calculation it is necessary to solve a system
of equations. If the number of input points is big, we
use methods that produce a final interpolation surface
using a local interpolant. In [PGTG04], there is a pro-
cedure which in the first step recursively splits the in-
put area into an overlapping sub-regions using k-d trees.
The second step is calculating the functional value as a
weighted average of two functions recursively enumer-
ated in the respective sub-regions. For a large number
of data points, we can use a RBF approximation given
in [MS16]. The method uses a determination of signif-
icantly fewer so-called referent points, which together
with the given points create an overdetermined system

of equations. This system of equations is then solved
by the method of least squares to obtain the unknown
coefficients of the resulting interpolation function.

For the needs of creating a model of the terrain, we of-
ten use a geostatistics method called Kriging [GS13,
Hug04]. It is based on predicting the value of a function
at a given point using the weighted average of points in
the neighbourhood of the calculated point.

From less-known methods for the terrain construction,
it is necessary to mention also neural networks of type
MLP, Support Vector Machine Regression and Neural
Networks in [ON15] or genetic algoritms in [BSS14].

3 METHODS
The creation of a digital terrain model from scattered
data points can be easily solved using suitable inter-
polation methods. In our case, we have focused on
the modification of known methods, using local inter-
polants, which are used instead of the height values.
As local interpolants, we choose thin plate splines and
Hardy’s multiquadrics [Isk03] and also well-known cu-
bic and quadratic polynomials of two variables. As a
further option, we choose the replacement of height val-
ues by planes, while their normal vector is calculated as
a gradient of the local interpolation function.

Let us have a set P of N mutually different input points
P = {p1[px

1, py
1], . . . ,pN [px

N , py
N ] | pi ∈R2} with height

values hi ∈R, for i= 1, . . . ,N. We search for such func-
tion f : R2 → R, for which the interpolation condition
is true:

f (pi) = hi, i = 1, . . . ,N. (1)

3.1 Inverse Distance Weighted (IDW)
The simplest form of IDW interpolation is called Shep-
ard’s method. Shepard defined his interpolating func-
tion f (x) with argument x ∈ R2 to be the weighted av-
erage of the heights hi [HL93]:

f (x) =
N

∑
i=1

ωi(x)hi. (2)

Weight functions ωi(x) from formula (2) can be ex-
pressed as:

ωi(x) =
σi(x)

∑
N
j=1 σ j(x)

,

where σi(x) = ||x−pi||−µi , for µi > 0. The parameter
µi allows to control the shape of the final surface in the
neighbourhood of the interpolated points. The standard
value for this parameter is µi = 2.

The global character of this method can be made local
by multiplying the weighted function ωi(x) by the mol-
lifying function [HL93]:

λi(x) =
(

1− σi(x)
Ri

)µi

+

, where Ri > 0.
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For example, we can set the radius Ri to D
2

√
Nw
N , where

D is the maximum distance between arbitrary two
points of the set P and Nw = 19 [TH10].

3.2 Radial Basis Functions (RBF)
Radial basis functions have gained immense popularity
in the multi-dimensional interpolation of scattered data.
They are simple to implement, and they generate an in-
terpolation surface with a sufficient smoothness.
We can write the interpolation function f (x) in the fol-
lowing form [HL93]:

f (x) =
N

∑
i=1

λiR(‖x−pi‖)+
l

∑
k=1

ckΦk(x), (3)

where Φk(x) ∈ π2
m, l = dim(π2

m) =
(m−1+2

2

)
. Symbol

πd
m denotes a linear space containing all polynomials

over the field R with d variables and a degree at most
m−1. Functions R(‖x−xi‖) are radial basis functions
with an argument expressing the euclidean distance be-
tween points x and xi.
Unknown coefficients λλλ = (λ1, . . . ,λN)

T and
c = (c1, . . . ,cl)

T in relation (3) are given by solv-
ing a system of equations:(

A P
PT 0

)(
λλλ

c

)
=

(
h
0

)
, (4)

where Ai, j = R(‖pi − p j‖), Pi,k = Φk(pi) and
h = (h1, . . . ,hN), for i, j = 1, . . . ,N and k = 1, . . . , l.
Due to the fact that both RBFs described below
are conditional positive definite [Fas07], the system
of equations (4) has a solution if the points xi are
non-collinear.

3.2.1 Thin Plate Splines (TPS)
Thin plate splines belong to the class of polyharmonic
splines:

Rd,m(‖x‖) = Rd,m(r) =

{
r2m−d if d is odd
r2m−d log(r) if d is even

The name is derived from a relation, in which we search
for the minimum of an integral describing the distribu-
tion of so-called bending energy on an infinitely thin
elastic plate. According to [Isk03], it is possible to write
the interpolation function in the form:

f (x) =
N

∑
i=1

λiRd,m(‖x−pi‖)+ ∑
|ααα|<m

cααα xααα , (5)

where ααα = (α1, . . . ,αd) is so-called multi-index and
xααα = xα1

1 · · ·x
αd
d , |ααα| = α1 + . . .+αd , αk ∈ Nd

0 . After
substituting d = m = 2 (dimension of space R2) we get
a standardly used interpolation function:

f (x) = f (x,y) =
N

∑
i=1

λir2
i log(ri) + c1 + c2x+ c3y, (6)

where ri = ‖x−pi‖=
√
(x− px

i )
2 +(y− py

i )
2.

3.2.2 Hardy’s Multiquadrics (HMQ)
This method is very similar to the previous method, but
it uses different RBFs, and for d = 2 it does not have a
polynomial term. For our interpolation problem, we get
the following interpolation function:

f (x) = f (x,y) =
N

∑
i=1

λi

√
r2

i + c2. (7)

Value c changes the shape of the resulting interpolation
surface. In general, a smaller value of the parameter c
creates so-called “sharp extremes” in the graph of the
function, while its greater value “smoothes” the func-
tion. In literature, there are several ways of how to suit-
ably choose it [HL93]:

• c = 0.815d, where d is the average distance between
the points pi of set P to their closest neighbours,

• c = 1.25 D
n , where D is the average of the smallest

circle, which contains all points of the set P ,

• c =
√

1
10 maxi, j ‖pi−p j‖,

• c =
√

3
5 mini, j ‖pi−p j‖.

3.3 Triangle Based Blending (TBB)
This method belongs to a group of methods that use
triangular irregular network T created from given
points pi. Delaunay’s triangulation is the most common
method because it maximizes the minimum angle of
triangles. There is a large number of optimal algo-
rithms that construct this triangular net with O(n logn)
complexity. We can find one of these approaches
in [BDH96]. First, we calculate for each point pi from
set P a biquadratic polynomial interpolating this point
and its five nearest neighbours:

fi(x,y) =a1(x− px
i )

2 +a2(x− px
i )(y− py

i )+

a3(y− py
i )

2 +a4(x− px
i )+a5(y− py

i )+hi.

The unknown coefficients a1, . . . ,a5 are calculated from
the condition that interpolates all 6 points. If we need to
calculate the value of the height h for the point x[x,y] we
have to find in which triangle ∆i jk of the triangulation
T this point lies. Then the height h is calculated as the
weighted average of three values of the corresponding
local functions [Ami02]:

f (x) = f (x,y) = wi fi(x,y)+w j f j(x,y)+wk fk(x,y),
(8)

where i, j,k are indices of vertices of triangle ∆i jk with
vertices pi,p j,pk (see Figure 1). In Figure 1, black stars
denote vertices, from which local interpolant fi(x,y)
corresponding to the vertex pi is calculated. Similarly,
blue circles denote vertices giving interpolant f j(x,y)
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Figure 1: Local function is calculated by one of the tri-
angle vertices and its adjacent vertices.

and green squares denote vertices creating local inter-
polant fk(x,y).
Smooth continuous transition between two triangles
can be guaranted by calculating weights using relation:

wi = d r
i /(d

r
i +d r

j +d r
k ),

where appropriate value for r is r = 2 or r = 3 and
lengths di,d j,dk can be determined by using barycen-
tric coordinates of the point x[x,y] of the triangle ∆i jk.

3.4 Natural Neighbours (NN)
This interpolation method belongs to the weighted av-
erage methods. To calculate the unknown height h at
point x, it uses a Voronoi diagram which can be con-
structed very effectively from Delaunay’s triangulation
by an algorithm with complexity O(n) [LH10]. We can
simply say that a Voronoi diagram is the union of all
Voronoi cells defined by the description:

V (pi) = {x ∈ R2 | ‖x−pi‖< ‖x−p j‖ ∀ j 6= i},

where pi ∈P .
Let us call natural neighbours of a point pi such points
p j, whose Voronoi cells V (p j) have a common edge
with Voronoi cell V (pi). It is also possible to extend
the previous definition for an arbitrary point x ∈ R2 by
including the point x in the set of given points P , and
then we create a new Voronoi diagram. Natural neigh-
bours of the point x are all its natural neighbours in the
newly created Voronoi diagram (see Figure 2, the grey
polygon represents a cell in the newly created Voronoi
diagram).
As in the TBB method, the unknown height value h is
calculated using the weighted average:

f (x) = ∑
n
i=1 aihi

∑
n
i=1 ai

, (9)

where hi are heights of n natural neighbours of the point
x and weights ai are areas of the polygon that are taken
from the area of the original Voronoi cell V (pi) af-
ter including the point x into the set P . Detailed de-
scription of the algorithm that calculates these weights

x

p1

p2

p3
p4

p5

V (p1)

V (p2)

V (p3)

V (p4)

V (p5) a1

a2

a3
a4

a5

Figure 2: The original Voronoi diagram and the new
Voronoi diagram which was created by including the
point x.

without creating the new Voronoi diagram can be found
in [LH10].

3.5 Least Square Methods (LSM)
Methods of least squares create approximation surfaces
that do not meet the interpolation condition (1). For
our purposes, we use it to determine the gradient at the
points [pi,hi] ∈ R3. Bivariate polynomials are used the
most often for terrain modelling using LSM:

f (x) = f (x,y) =
m

∑
k=0

∑
r+s=k

arsxrys, (10)

where m is chosen polynomial degree (m = 2 or m = 3)
and ars are unknown coefficients. To determine them,
we need at least (m+1)! given points pi. Unlike inter-
polation functions, which usually lead to solving a sys-
tem of equations with a number of columns equal to the
number of unknowns, in the method of least squares, we
solve a system of equations with more equations than
the number of unknowns. Consequently, the resulting
surface cannot pass through the given entry points.
Let us calculate the bivariate polynomial for each point
of pi[px

i , py
i ] and error ei. Than we can create a system

of equations:

hi ≈
m

∑
k=0

∑
r+s=k

ars(px
i )

r(py
i )

s + ei, i = 1, . . . ,N, (11)

where N� m.
We search for such values of coefficients ars so that the
following holds:

N

∑
i=1

e2
i → 0

After rewriting the system of equations (11) into matrix
form, we obtain:

h≈ Pa+ e. (12)

It is true that the sum of the squared errors ∑
N
i=1 e2

i has
a minimum for such vector of coefficients a that we can
calculate using a system of normal equations [GR70]:

PTh = PTPa
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Vector of unknown coefficients a can be calculated
from relation:

a = (PTP)−PTh,

where (PTP)− is a pseudoinverse matrix to matrix
(PTP). It is numerically convenient to use singular
value decomposition (SVD) method while solving
the system (12). We can find the SVD method, for
example, in [GR70].

4 OUR APPROACH
Each of these interpolation methods has some draw-
backs. RBF methods require solving systems of equa-
tions, which for a large number of input points results
in high memory costs, very long calculation time and
problems with numerical stability of the calculations.
IDW methods, in addition to long calculation time, cre-
ate unwanted artefacts (see Figure 7) in the shape of the
resulting interpolation surface, which are present also
in the TBB and NN methods.

Using local interpolation functions in this context is
new. We have not found any study which uses lo-
cal functions in interpolation methods for digital ter-
rain model creation. In our comparison, we try to find
such an interpolation method that has sufficient visual
smoothness and does not suffer from shape artefacts. It
should also have sufficient accuracy and a short time of
calculation.

In this section, we give a procedure for finding close
neighbours to a given point pi, which are necessary for
constructing local interpolants. We will also introduce
alterations to the methods using the weighted average,
while we replace given height values hi of points pi by
local functions fi(x).

4.1 Nearest Neighbours
Close neighbours of a point pi can be found using
Delaunay triangulation T created in-advance, because
each vertex contains a pointer to all adjacent vertices
when the triangulation is created. To determine local
interpolants, we need to specify the minimum number
of close neighbours of point pi. Without this condition,
it is not possible to calculate all the unknown coeffi-
cients of local functions.

The procedure of finding these neighbours is shown in
Figure 3. First, we find all adjacent vertices in the tri-
angulation T to the vertex (point) pi, and we add them
to the list of close neighbours. In Figure 3, they are
marked by circles, and their index in the upper left cor-
ner has value 1 (level of the depth). If necessary, we
add also the neighbouring vertices of these vertices to
the list. They are marked by a star in the picture, and
their index in the upper left corner shows depth value
2. We continue to the chosen level in this way. If the

number of close neighbours does not achieve the nec-
essary value, we find other vertices using the euclidean
distance from vertex pi. In Figure 3, such vertices are
labeled by green rectangles. To speed up the search by
distance, we use a hash table in which all entry points
pi are assigned in advance.

p5p6

Figure 3: Selecting close neighbours of vertex pi based
on the neighbourliness and euclidean distance.

4.2 Modification of the Methods Using the
Weighted Average

Replacing given height values by local interpolation
functions allows the methods using the weighted aver-
age to make the resulting interpolation surface much
more similar to the ideal (real) surface of the terrain.

Let us rewrite the expressions for interpolation func-
tions f (x) such that we use a local function fi(x) in-
stead of the height hi:

• We get the following expression for the IDW method
(see relation (2)):

f (x) =
N

∑
i=1

ωi(x) fi(x).

• The expression remains the same in the TBB meth-
ods (see relation (8)), but the original biquadratic
polynomial is replaced by a general local function.

• For the method NN (relation (9)), we get the follow-
ing expression:

f (x) = ∑
n
i=1 ai fi(x)
∑

n
i=1 ai

,

where n is number of natural neighbours of point x.

4.3 Local Interpolants
At first, we choose thin plate splines (paragraph 3.2.1)
and Hardy’s multiquadrics (paragraph 3.2.2) as the lo-
cal interpolants in our tests. Secondly, we use bivariate
polynomial:

fi(x,y) =
m

∑
k=0

∑
r+s=k

ars(x− px
i )

r(y− py
i )

s +hi
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Figure 4: Original height map of the Little Carpathians
is on the left, and the model created using TPS is on the
right.

with m = 2 (biquadratic polynomial) and m = 3 (bicu-
bic polynomial). Unknown coefficients ars are cal-
culated from interpolation conditions fi(px

l , py
l ) = hl ,

where pl [p
x
l , py

l ] are nearest neighbours of point pi.

Value of the height hi at point pi can be replaced by
a relatively simple function of plane going through the
point pi[p

x
i , py

i ,hi] with expression:

fi(x,y) =
nx

nz
(x− px

i )+
ny

nz
(y− py

i )+hi,

while the normal vector n(nx,ny,nz) is calculated from
the gradient:

n(nx,ny,nz) =

(
∂ f (px

i , py
i )

∂x
,

∂ f (px
i , py

i )

∂y
,−1

)
,

where f (x) is any of the previously mentioned local
functions, from which we can easily calculate the gra-
dient.

5 TEST OF METHODS AND RESULTS
To test our modifications and compare different in-
terpolation methods for creating digital terrain model,
we have used a dataset of height points of the Lit-
tle Carpathians obtained from the United States Geo-
logical Survey in SRTM format with a resolution of
1 arc second (30 meters). From this height map, we
have created two files. The first contains the area
region: 48.00◦N,17.00◦E− 49.00◦N,18.00◦E, in fig-
ures and tables it is labelled with the name Karpaty
(see Figure 4). The second file contains the area re-
gion: 48.15◦N,17.05◦E−48.20◦N,17.10◦E labelled as
KarpatyCrop.

For both files, we have created samples with N = 2000,
4000, 7000 and 10000 randomly selected points that
were used to create the model of the terrain. We have
also created a sample of M = 20000 test points to ver-
ify the accuracy of the model. We could not use a larger
number of points for comparing interpolation methods

because the TPS and HMQ methods require using ma-
trices with a large number of nonzero elements. In
this article, we present results only for a sample of
N = 10000 points because of the limited space.

To create a digital terrain model, we have used not
only all previously described methods, but also Powell-
Sabin [PS77] and Clough-Tocher [Ami02] methods.
However, we do not include these two methods in the
results because we have not obtained for them an in-
terpolation surface without unwanted artefacts, even
though we have used the optimal normal vectors calcu-
lated from the gradient of the local TPS interpolation.

While evaluating the precision with which the model
approximates the real terrain surface, we have used two
statistical metrics:

RMSE =

√
∑

M
j=1( f (x j,y j)−h j)2

m

and

Max Absolute Error = max
j=1,...,M

{| f (x j,y j)−h j|}.

In addition to these metrics, we have been interested
also in the visual smoothness, calculation time, mem-
ory demand and suitability for creating contours, which
are used in topographic maps. Our results are shown in
Table 1. Value Accuracy rank in the third column indi-
cates the average rank of the given method, or group
of methods (lower value is better). For a group of
methods, we have always chosen the best candidate
for the current sample of test points. Suitability sign
“+/o/-” of accuracy is based on the accuracy rank.
Similarly, suitability of the calculation time is based
on the elapsed time in Table 2 and 3, memory demand
is based on if large matrices are used in the algorithm
and visual smoothness is decided visually using the ob-
tained images (see Figure 7), depending on whether sur-
faces contain artefacts.

In the graphs, tables and pictures, we use the follow-
ing abbreviations: lHMQ, lTPS, lQLS, lCLS denote us-
ing Hardy’s multiquadrics, thin plate spline, biquadratic
and bicubic polynomials as the local interpolant. Ab-
breviations gHMQ, gTPS, gQLS, gCLS denote using
the relevant local functions while calculating the gradi-
ent of the tangent plane.

In the right part of Figure 4, we can see the terrain
model of the Little Carpathians which has been calcu-
lated using the TPS method using 10000 points. This
figure also demonstrates the suitability of this method
for creating topographic maps with contour lines.

In Figure 7, we can see how using local functions in
methods IDW, TBB and NN improves the shape of the
resulting surface of the model of the terrain, and re-
moves existing shape artefacts. In the top row, we can
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see at the same time the impact of improperly selected
shape parameter in Hardy’s multiquadrics, which leads
to undesirable sharp points.
In Table 2 and Figure 5, we can see the evaluation of the
accuracy of the resulting interpolation surfaces for data
file Karpaty, and in Table 3 and Figure 6 for the data file
KarpatyCrop. In the last column, we give in seconds
the time necessary to calculate the height values for a
grid 5463× 8192 points. The evaluation time does not
contain time for creating the hash table and the initial
triangulation.
All methods have been tested on a desktop PC with In-
tel(R) Core(TM) i5-4670K CPU @3.40GHz processor
with 8GB RAM.

Method Accuracy Accuracy
rank

Calculation
time

Memory
demand

Visual
smooth-

ness
HMQ +/-1 5.5 - - +/-1

TPS + 5.3 - - +
NN - 17.4 o/+ + o
NN + plane + 7.9 o/+ + +
NN + local + 4.1 o + +
IDW - 22.3 - + -
IDW + plane o 10.3 - + -
IDW + local + 3.3 - + +
TBB - 23.9 + + -
TBB + plane o 12.5 + + -
TBB + local + 4.9 + + o

Table 1: Suitability of using interpolation method.
Symbol “+” represents suitability, “-” unsuitability and
“o” average suitability of using a method.

6 CONCLUSION
We have shown that using local functions to the known
methods (IDW, TBB and NN) for creating a digital ter-
rain model significantly improves the visual smooth-
ness of the resulting spline surface. It also increases
the accuracy with which this surface approximates the
actual surface of the terrain, and it suppresses unde-
sired shape artifacts. With a suitable local function, we
can even achieve results comparable with RBF meth-
ods, which have great memory and calculation require-
ments. At the same time, we have also pointed out
that a wrong choice of the shape parameter in the HMQ
method leads to a problematic surface shape.
The most appropriate method for creating the digital
model, taking into account the computation time, accu-
racy, memory requirements and visual smoothness, is
the method of Natural Neighbor with a local thin plate
spline interpolant. As the second in order, we could
use Triangle Based Blending method again with the lo-
cal TPS interpolant, which is faster to calculate, but has
worse visual smoothness.
An interesting finding is also the fact that the number of
near vertices in LSM methods relates to the complexity

1 Depends on the shape parameter c.

Method Max
Absolute

Error

Mean
Absolute

Error

RMSE Elapsed
Time (s)

HMQ 184.857 10.726 20.199 6715
TPS 236.593 10.839 20.787 20930
NN - gQLS 185.654 11.221 21.090 95
NN - gCLS 204.537 11.570 21.838 107
NN - gHMQ 247.088 11.754 22.616 67
NN - gTPS 279.048 12.416 24.074 84
NN - lQLS 188.975 11.114 20.900 87
NN - lCLS 468.349 11.256 21.660 84
NN - lHMQ 205.663 10.781 20.332 86
NN - lTPS 210.575 10.732 20.495 171
IDW - gQLS 195.854 11.582 21.817 2541
IDW - gCLS 283.569 11.664 22.367 2532
IDW - gHMQ 259.551 11.762 22.775 2536
IDW - gTPS 298.943 12.436 24.255 3347
IDW - lQLS 203.549 11.669 21.666 2552
IDW - lCLS 500.426 20.895 39.873 2547
IDW - lHMQ 202.336 10.816 20.400 2616
IDW - lTPS 199.480 10.855 20.771 3603
TBB - gQLS 244.792 11.755 22.490 8
TBB - gCLS 271.387 11.918 22.991 7
TBB - gHMQ 257.001 11.992 23.461 8
TBB - gTPS 300.422 12.764 25.434 8
TBB - lQLS 245.993 11.565 22.098 8
TBB - lCLS 316.560 11.542 22.305 9
TBB - lHMQ 193.657 10.799 20.338 18
TBB - lTPS 201.006 10.780 20.562 21
Table 2: Accuracy and time of calculation for the tested
methods for data file Karpaty.

of the terrain. For a rugged terrain, we have achieved
better results when we used more points, and for a less
rugged terrain when we used fewer points.

7 FUTURE WORKS
In future work, we would like to focus on other ways
to estimate parameter c, which occurs in some RBFs.
In addition, we would like to verify the effect of select-
ing different neighbours on the accuracy of the interpo-
lation surface and use compactly supported RBFs for
calculation of a digital terrain model. Our testing algo-
rithm has not used any accelerating techniques such as
using parallelization or GPU, but it would be interest-
ing to investigate the acceleration obtained using these
techniques.
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Figure 5: A plot showing the ranking of accuracy of
individual methods for data file Karpaty.
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(a) Clough-Tocher (b) Hardy Multiquadrics (c) Thin Plate Spline

(d) IDW (e) IDW - gTPS (f) IDW - lTPS

(g) TBB (h) TBB - gTPS (i) TBB - lTPS

(j) NN (k) NN - gTPS (l) NN - lTPS

Figure 7: Removing shape artefacts while using local functions. Surfaces of the original methods are on the left,
modifications using the tangent planes are in the middle, using local TPS is on the right.
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