
A Fractal Model of Mountains with Rivers

Przemyslaw Prusinkiewicz and Mark Hammel
Department of Computer Science

University of Calgary
Calgary, Alberta, Canada T2N 1N4

e-mail: pwpjhammel@cpsc.ucalgary.ca

From Proceeding of Graphics Interface ’93, pages 174–180, May 1993
Held in Toronto, Ontario, 19-21 May 1993



A Fractal Model of Mountains with Rivers
Przemyslaw Prusinkiewicz and Mark Hammel

Department of Computer Science
University of Calgary

Calgary, Alberta, Canada T2N 1N4
e-mail addresses: pwp@cpsc.ucalgary.ca, hammel@cpsc.ucalgary.ca

ABSTRACT

This paper addresses the long-standing problem of generating
fractal mountains with rivers, and presents a partial solution
that incorporates a squig-curve model of a river’s course into
the midpoint-displacement model for mountains. The method
is based on the observation that both models can be expressed
by similar context-sensitive rewriting mechanisms. As a re-
sult, a mountain landscape with a river can be generated using
a single integrated process.

KEYWORDS: modeling of natural phenomena, terrain mod-
els, midpoint displacement, squig curve, context-sensitive
geometric rewriting.

INTRODUCTION

In 1988, Mandelbrot pointed out “the most basic defect of past
fractal forgeries of landscape” — the fact that each of them
fails to include river networks [12, pages 243–260]. Since
then, Kelley, Malin and Nielson [5] overcame this limitation
by generating fractal terrain around a predefined drainage
system. Pursuing an alternative approach, Musgrave, Kolb,
and Mace [11] created river channels by simulating water
erosion in fractal mountains. Both methods require separate
processes to define the mountain and the river system. A dif-
ferent technique was introduced by Bardeen, whose program
Panorama [1] combines mountain and river generation into a
single process. The details of his algorithm have not yet been
published.

In this paper we introduce a method that — like Bardeen’s
— creates the mountain and the river system simultaneously.
Specifically, we combine the midpoint-displacement method
for mountain generation given by Fournier, Fussell, and Car-
penter [3] with the squig-curve model of a non-branching
river originated by Mandelbrot [7, 8] (see also [9, Chapter
24]). Our method employs a context-sensitive rewriting sys-
tem operating on geometric objects. Theoretical interest in
such systems has been spawned by Smith [14], but few exam-
ples have been investigated to date. Consequently, a part of
our paper is devoted to the discussion of the context-sensitive
aspects of the constructions under consideration.

y
A

y
B

y
C

x
A x

B

x
C

Figure 1: A production for fractal mountain generation us-
ing the midpoint displacement method. The initial altitudes
xA; xB andxC of the vertices of a subdivided triangle,and the
displacement values yA; yB and yC , vary between instances
of production application.

We begin with a review of the basic midpoint-displacement
construction. A description of the squig-curve construction
follows. The two constructions are then related as different
facets of the same context-sensitive process of triangle subdi-
vision, and combined into a model of mountains with rivers.
The paper is concluded by a list of topics open for further
research.

MIDPOINT-DISPLACEMENT METHOD REVISITED
In the simplest version of the midpoint-displacement method,
an initial horizontal triangle is subdivided into four smaller
triangles, and the newly created vertices are displaced ver-
tically by random values. A similar process is repeated for
each of the smaller triangles, then for each of their descen-
dants, until a given recursion limit is reached. Smith [14]
presented midpoint displacement as a rewriting process gov-
erned by the class of productions depicted in Figure 1. This
characterization related fractal mountain generation to for-
mal language theory, and raised a question regarding the
nature of the rewriting process in hand: Is it context-free or
context-sensitive? Smith wrote: “In formal language theory,
as Loren Carpenter has pointed out to me, the problem with
his language is that it is context-free. Information internal to
an original database triangle is never passed to neighboring
triangles.” Although this view has been supported in the liter-
ature [10], [12, page 244], it disregards a form of information
transfer that does take place between neighboring triangles.
As shown in Figure 2, we cannot apply the production of
Figure 1 independently to triangles P and Q sharing a com-
mon edge l, since the displacement of the midpoint of l must



P
Q

lP
lQ

yP

yQ

Figure 2: The midpoint-displacement method is context-
sensitive. After the subdivision of triangles P and Q, the
midpoints of the coinciding edges lP and lQ are displaced
by vectors of equal lengths, yP = yQ. In practical imple-
mentations, lines lP and lQ collapse to a single edge l shared
between triangles P and Q.

predecessors

successors

predecessors

successors

a

b

Figure 3: Information transfer in context-sensitive parallel
grammars (a) and in the midpoint-displacement method (b).
Continuous arrows represent the flow of information from the
parent object to its replacement. Dashed arrows represent the
flow of contextual information.

be the same for both P and Q [3]. Thus, the production
instance applied to triangle P depends on that applied to tri-
angle Q, and vice versa. This implies information transfer
between P and Q, although its nature is different from that
usually considered in formal language theory (specifically,
in the theory of L-systems, which deals with parallel rewrit-
ing [6]). Traditionally, the set of applicable productions is
constrained by the neighbors of the strict predecessor (the
symbol being replaced). On the other hand, in midpoint dis-
placement each production is constrained by the successors
of the productions applied concurrently to the neighboring
triangles (Figure 3). Nonetheless, in both cases the outcome
of a production depends on its neighbors, and in this sense
both production types are context-sensitive.

The information transfer associated with context-sensitive
productions used in the midpoint-displacementmethod is fur-

a
31

2

b

1 2

3

1

2

3

1

2 3

1

2

3

1

23 12

3

d

3
1

2 3
1

2 3
1

2
1

2

1

2

1

3

1

3 2

3 2

3 2

3

1

3

1

3

1

2

2

c

1
2

3 1
2

3 1
2

3
2

3

2

3

2

1

2

1 3

1 3

1 3

1

2

1

2

1

2

3

3

Figure 4: Information transfer in the midpoint-displacement
method. Production (a) has six instances (b). The subdivision
pattern of the bottom left triangle determines the subdivision
patterns for all remaining triangles, as shown here for the
third level of recursion (c, d).

ther illustrated in Figure 4. The productions (a) are assumed
to raise midpoints of the subdivided edges by 1, 2, and 3 units,
counting counterclockwise. Distinguishing between possible
orientations of the subdivided edges, we obtain six instances
of production (a), as shown in (b). During the construction of
a mountain, the production instance applied, say, to the bot-
tom left triangle determines production instances appropriate
for subdividing all other triangles (c, d). Thus, information is
passed between the bottom left triangle and all other triangles
in the mesh.

Note that Figures 4 (c) and (d) can also be viewed as tilings
using tiles with labeled edges. Coinciding edges must have
the same label. A square-grid counterpart of such tilings was
proposed and studied by Wang [15, 16] (see also [4, Chapter
11]), who showed that the operation of any Turing machine
can be simulated using a set of appropriately labeled tiles.
Clearly, a context-sensitive information-passing mechanism
is needed to achieve this computational power.



(x
A

, y
A

) (x
B

, y
B

)

hashing
function

random number
table

scaling
factor

displacement

x

Figure 5: Deterministic calculation of a psuedorandom
midpoint-displacement value.

The context-sensitive nature of the midpoint-displacement
method may be hidden by programming techniques used to
implement it. For example, Fournier et al. wrote [3]: “An
obvious requirement is that the same random displacements
must be generated on each boundary, which can be accom-
plished by tying the seeds of the random number generator
to identifiers of points on the boundary, making certain that
the same identifiers are assigned to the corresponding points
in the representation of each polygon’s boundary.” A deter-
ministic variant of this technique, suggested by Smith [14], is
illustrated in Figure 5. When an edge is subdivided, the coor-
dinates of its endpoints determine, via a hashing function, an
index into a prestored table of random numbers that represent
possible displacement values. Thus, if the displacement of
the midpoint of edge l in Figure 2 is calculated separately
for both triangles P and Q that share l, the returned values
yP and yQ will be the same. This technique replaces the ex-
plicit context-sensitivity with the dependence of production
parameters on the position of the subdivided triangle in the
underlying coordinate system. Consequently, the determin-
istic midpoint-displacement method can be implemented in a
simple, recursive manner.

SQUIG CURVES REVISITED

Mandelbrot introduced squig curves as “a model of a river’s
course, patterned after the well-known pictures in geology
or geography that show the successive stages of a river that
burrows into a valley, defining its course with increasing pre-
cision” [9, page 255]. Peyrière [13] (see also [2]) proposed
to consider squig curve construction as a random rewriting
process, governed by the set of productions depicted in Fig-
ure 6. The production predecessor is a triangle with the edges
labeled entry, exit, and neutral. The entry edge represents the
set of possible sites where the curve may enter this triangle,
and the exit edge represents the set of possible sites where
the curve may leave it. The neutral edge is not intersected

Edges: neutral.exit,entry,

Figure 6: Productions for generating a squig curve. Before
production application, the predecessor and the successor
may be translated, rotated, reflected, and scaled. Arrows
indicate the direction of the curve (river flow). Vertical bars
separate alternative production successors.

by the curve. Each production subdivides the predecessor
triangle into four smaller triangles, satisfying the following
constraints:

� The entry edge of the predecessor is subdivided into an
entry edge and a neutral edge;

� The exit edge of the predecessor is subdivided into an
exit edge and a neutral edge;

� The neutral edge of the predecessor is subdivided into
two neutral edges;

� Each pair of coinciding edges inside the subdivided tri-
angle consists either of an entry and an exit edge, or of
two neutral edges.

Figure 6 shows a set of four productions satisfying these cri-
teria. The squig curve construction begins with a triangle
that has one entry and one exit edge. A production appli-
cation partitions these edges into two equal segments while
subdividing the triangle. For each original edge crossed by
the river, one of the new segments is selected as the next
approximation of the crossing site. Once the entering and
exit segments have been chosen, the path of the river through
the new triangles is uniquely defined, assuming that a river
may go through each triangle at most once. The subdivision
process is repeated recursively until the desired level of detail
is reached.

As shown in Figure 7, the segments crossed by the river must
be chosen consistently for each pair of adjacent triangles, so
that the exit segment from one triangle matches the entry
segment of the neighboring triangle. Thus, triangle subdi-
vision during squig curve construction is a context-sensitive
process similar in nature to midpoint displacement. In both
cases, a consistent decision regarding the edge shared by two
triangles must be reached, whether it determines the altitude
to which the midpoint will be raised, or the edge segment
through which the squig curve will pass. Consequently, a



Q

P R

match

match

Figure 7: Consistent subdivision of three triangles P , Q, and
R during a squig curve construction. After the subdivision,
the exit edge from triangle P matches the entry edge to tri-
angle Q and, in a similar way, the exit edge from triangle Q
matches the entry edge to triangle R.

squig curve can be constructed in a manner analogous to the
deterministic implementation of the midpoint displacement
method (Figure 5). The location of the vertices of an edge
crossed by the river is used as a key into a hash table of ran-
dom numbers. The sign of the returned number determines
which segment will be crossed in the next approximation of
the riverbed.

The above algorithm guarantees that the river will run contin-
uously through the mesh of triangles and will never intersect
itself. A sample squig curve construction is illustrated in
Figure 8.

INTEGRATION OF A RIVER AND A MOUNTAIN
The previous two sections demonstrate that the midpoint-
displacement method and the construction of a squig curve
can be viewed as variants of the same context-sensitive sub-
division of a triangle. This suggests the combination of both
constructions into a single algorithm. At each subdivision
step, the path of the river and the shape of the mountain are
specified with increased accuracy. When a triangle is subdi-
vided to then-th level of recursion, the midpoints of the edges
crossed by the squig curve are assigned the minimum altitude
alt(n), calculated as the sum of negative displacement limits
di in the previous and current subdivision steps:

alt(n) =
nX

i=1

di :

The remaining midpoints are not affected by the river’s course
and are displaced in the usual pseudorandom way. The re-
sulting algorithm for generating a mountain traversed by a
river is illustrated in Figure 9. Note that if the top view of a
mountain is regarded as a planar graph, at each level of recur-
sion there is a path from its initial entry edge to the final exit
edge, formed by the chain of vertices assigned the minimum
altitude. For example, in Figure 9(c) this path runs through

Figure 8: Example of a squig curve construction (recursion
levels 0–7).

a b c

Figure 9: Vertices affected by a river’s course at the first,
second, and third level of the recursive construction of a
fractal mountain with a river.

the vertices marked by a square box. Since these vertices
have the same altitude, and are guaranteed to be the lowest
of all points in the landscape, we can interpret the path that
connects them as a riverbed. The river will never run upwards
and will always lie lower than the surrounding terrain, thus
satisfying two obvious constraints that a real river must meet.

A mountain landscape with a clearly defined river channel can
be convincingly approximated using six or seven recursion
levels. At nine or ten levels the results are more realistic,
but the number of polygons is much larger (over 1 million
for ten levels). Two sample landscapes created using the
proposed method at ten levels of recursion are shown in Plates
1 and 2. The colors of the vertices, including the river,
were determined by their altitudes serving as indices into an



A

B1

B2

B3

Figure 10: The emergence of an asymmetric valley, shown
in cross-section. Consecutive approximations of the riverbed
may move it horizontally towards a high-altitude point A,
creating a succession of increasingly steep walls AB1, AB2,
and AB3. The arrows indicate the vertical displacements of
the midpoints of the selected edges.

appropriate color map; the triangles were filled using Gouraud
shading.

CONCLUSIONS
We have presented a technique for generating fractal moun-
tains with rivers that combines the midpoint-displacement
method for mountain generation with the squig-curve model
of a river’s course. Using this technique, we were able to
achieve some degree of realism in the synthesized landscapes.
Nevertheless, three key problems remain open:

� The river flows at a constant altitude. This assumption,
although physically incorrect, could be viewed as an
approximation for a river with a small slope, such as one
flowing in the plains. However, in mountain landscapes
the slope should not be neglected — for example, to
make waterfalls possible.

� The river flows in an asymmetric valley. The algorithm
tends to produce asymmetric river valleys in the shape of
an italicized letter V - with one side almost vertical. This
phenomenon, clearly visible in Plates 1 and 2, results
from the river approaching a mountain vertex placed at
a high altitude (Figure 10). In nature, both sides tend to
be more symmetric and less steep.

� The river has no tributaries. The squig-curve construc-
tion can be extended with productions that introduce
branching points and subdivide triangles that already in-
clude such points (Figure 11). Sample planar curves
generated this way are shown in Figure 12. Unfortu-
nately, it is not immediately apparent how these curves
could be incorporated into fractal mountains. A model
of a river source would be necessary, since the tributaries
usually originate within the visualized area.

ba

Figure 11: Sample productions for generating branching ex-
tensions of squig curves. Production (a) creates a tributary.
Production (b) subdivides a triangle that already includes a
branching point.

Figure 12: Extended squig curves with branches.

In addition, the images could be improved using more so-
phisticated rendering techniques.

ACKNOWLEDGMENTS
We would like to thank Ken Musgrave for outlining to us
the state of the art in the modeling of landscapes with rivers,
James Bardeen for a description of his software for landscape
synthesis, and Benoit Mandelbrot, as well as Jules Bloomen-
thal, for helpful comments on our initial manuscript. We also
gratefully acknowledge the support from the Natural Sciences
and Engineering Research Council of Canada in the form of a
research grant, a graduate scholarship, and equipment grants.

REFERENCES

[1] J. M. Bardeen. Panorama User’s Manual. Manuscript,
1992.

[2] F. M. Dekking. Substitutions, branching processes and
fractal sets. In J. Bélair and S. Dubuc, editors, Fractal
Geometry and Analysis, NATO ASI Series, pages 99–
119. Kluwer Academic Publishers, Dordrecht, 1991.

[3] A. Fournier, D. Fussell, and L. Carpenter. Computer
rendering of stochastic models. Communications of the
ACM, 25(6):164–172, June 1982.

[4] Branko Grünbaum and G. C. Shephard. Tilings and
Patterns. W. H. Freeman and Company, New York,
1987.

[5] A. D. Kelley, M. C. Malin, and G. M. Nielson. Terrain
simulation using a model of stream erosion.Proceedings



of SIGGRAPH ’88, in Computer Graphics 22, 4, pages
263–268, ACM SIGGRAPH, New York, 1988.

[6] A. Lindenmayer. Developmental algorithms: Lineage
versus interactive control mechanisms. In S. Subtelny
and P. B. Green, editors, Developmental order: Its ori-
gin and regulation, pages 219–245. Alan R. Liss, New
York, 1982.

[7] B. B. Mandelbrot. Les objets fractals. La Recherche,
9:1–13, 1978.

[8] B. B. Mandelbrot. Colliers alléatoires et une alternative
aux promenades aux hasard sans boucle: les cordonnets
discrets et fractals. Comptes Rendus (Paris), 286A:933–
936, 1979.

[9] B. B. Mandelbrot. The fractal geometry of nature. W.
H. Freeman, San Francisco, 1982.

[10] G. Miller. The definition and rendering of terrain maps.
Proceedings of SIGGRAPH’86 (Dallas, Texas, August
18-22, 1986) in Computer Graphics, 20, 4 (August
1986), pages 39–48, ACM SIGGRAPH, New York,
1986.

[11] F. K. Musgrave, C. E. Kolb, and R. S. Mace. The synthe-
sis and rendering of eroded fractal terrain. Proceedings
of SIGGRAPH ’89, in Computer Graphics 23, 3, pages
41–50, ACM SIGGRAPH, New York, 1989.

[12] H.-O. Peitgen and D. Saupe, editors. The Science of
Fractal Images. Springer-Verlag, New York, 1988.

[13] J. Peyrière. Processus de naissance avec interaction des
voisins, évolution des graphes. Annales de l’Institut
Fourier, 31:187–218, 1981.

[14] A. R. Smith. Plants, fractals, and formal languages. Pro-
ceedings of SIGGRAPH ’84 (Minneapolis, Minnesota,
July 22–27, 1984) in Computer Graphics, 18, 3 (July
1984), pages 1–10, ACM SIGGRAPH, New York, 1984.

[15] H. Wang. Proving theorems by pattern recognition. Bell
System Technical Journal, 40:1–42, 1961.

[16] H. Wang. Games, logic, and computers. Scientific
American, 11:98–106, 1965.



Plate 1: A fractal landscape with a river. This image was generated on a Silicon
Graphics VGX 3D/310 workstation at 10 levels of recursion in approximately 8 minutes.

Plate 2: Another fractal landscape with a river.


