
 

 

Computer Graphics 

 
 †- Texturing  Methods - 



Overview 
• Last time 

– BRDFs 

– Shading 

• Today 
– Texturing 

• Texture parameterization 

– Procedural methods 

• Procedural textures 

• Fractal landscapes 

• Next lecture 
– Texture filtering 

– Alias & signal processing 
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TEXTURING 
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Simple Illumination 
• No illumination 

• Constant colors 

 

 

 

 

 

• Parallel light 

• Diffuse reflection 
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Standard Illumination 
• Parallel light 

• Specular reflection 

 

 

 

 

 

• Multiple local light sources 

• Different BRDFs 

 

 

• Object properties constant       
 over surface 
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Texturing 
• Varying object properties 

– 2D image reflectance textures 

– Bump-mapping 

 

• Environment characteristics 
– Shadows 

– Reflection textures 
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Texture-Modulated Quantities 
• Modulation of object surface properties 

• Reflectance 
– Diffuse reflection coefficient kd 

– Specular reflection coefficient ks 

• Opacity (α) 
– Modulating transparency (e.g. for fences) 

• Normal vector 
– Bump mapping: N’(P) = N(P + t N)  (in normal direction, height) 

– Normal mapping: N’ = N + Δ N  (arbitrary offset) 

• Geometry 
– Displacement mapping: P’ = P + Δ P 

 

• Distant illumination 
– Environment mapping / reflection mapping 
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2D Texture Mapping 

• Forward mapping 
– Object surface parameterization 
– Projective transformation 

• Inverse mapping 
– Find corresponding pre-image/footprint of each pixel in texture 
– Integrate over pre-image 

8 



Forward Mapping 
• Maps each texel to its position in the image 

• Uniform sampling of texture space does not 
guarantee uniform sampling in screen space 
– Can create holes, need to scan-convert (see later) 

• Possibly used if 
– The texture-to-screen mapping is difficult to invert 

– The texture image does not fit into memory 

• Process texture in tiles in order 

 
• Texture scanning: 

• for v 

•    for u 

•       compute x(u,v) and y(u,v) 

•       copy TEX[u,v] to SCR[x,y] 
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Surface Parameterization 
• To apply textures we need 2D coordinates on 

surfaces 

 → Parameterization 

• Some objects have a natural parameterization 
– Sphere: spherical coordinates (φ, θ) = (2π u, π v) 

– Cylinder: cylindrical coordinates (φ, h) = (2 π u, H v) 

– Parametric surfaces (such as B-spline or Bezier surfaces → later) 

• Parameterization is less obvious for 
– Polygons, implicit surfaces, teapots… 

 

10 



Triangle Parameterization 
• Triangle is a planar object 

– Has implicit parameterization (e.g. barycentric coordinates) 
– But we need more control: placement of triangle in texture space 

• Assign texture coordinates (u,v) to each vertex (xo,yo,zo) 

• Apply viewing projection (xo,yo,zo) → (x,y) (details later) 

• Yields full texture transformation (warping) (u,v) → (x,y) 

 

 
– In homogeneous coordinates (by embedding (u,v) as (u,v,1)) 

 

 

 

 
– Transformation coefficients determined by 3 pairs (u,v)→(x,y) 

• Three linear equations 

• Invertible iff neither set of points is collinear 
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Triangle Parameterization (2) 
• Given 

 

 

• The inverse transform (x,y)→(u,v) is 

 

 

 

• Coefficients must be calculated for each triangle 
– Rasterization 

• Incremental bilinear update of (u’,v’,q) in screen space 

• Using the partial derivatives of the linear function (i.e. constants) 

– Ray tracing 
• Evaluated at every intersection 

• Often derivatives are needed as well 
– Explicitly given in matrix 
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Cylinder Parameterization 
• Transformation from texture space to the cylinder 

parametric representation can be written as: 

 

 

• where H is the height  
of the cylinder. 

• The surface coordinates in  
the Cartesian reference 
frame can be uniquely 
expressed as: 
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Two-Stage Mapping 
• Inverse mapping for arbitrary 3D surfaces too complex 

• Approximation technique is used: 
– Mapping from 2D texture space to a simple 3D intermediate surface 

(S mapping) 

• Should be a reasonable approximation of the destination surface 

• E.g.: plane, cylinder, sphere, cube, ... 

• Mapping from the intermediate surface to the 
destination object surface (O mapping) 
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O-Mapping 
• Determine point on intermediate surface through 

– Reflected view ray 

• Reflection or environment mapping 

– Normal mapping 

– Line through object centroid 

– Shrink-wrapping 

• Forward mapping 

• Normal mapping from        
 intermediate surface 
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Two-Stage Mapping: Problems 
• May introduce undesired texture distortions if the 

intermediate surface differs too much from the 
destination surface 

• Still often used in practice because of its simplicity 
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Two-Stage Mapping: Example 
• Different intermediate surfaces 

• Plane 
– Strong distortion where object surface normal  to plane normal 

• Cylinder 
– Reasonably uniform mapping (symmetry !) 

• Sphere 
– Problems with concave regions 
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Projective Textures 
• Project texture onto 

object surfaces 
– Slide projector 

• Parallel or perspective 
projection 

 

• Use photographs as 
textures 

 

• Multiple images 
– View-dependent texturing 

(advanced topic) 

 

• Perspective mapping 
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Projective Texturing: Examples 
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Reflection Mapping 
• Also called “environment mapping” 

• Reflection map parameterization 
– Intermediate surface in 2-stage mapping 

– Often cube, sphere, or double paraboloid 

• Assumption: Distant illumination 
– Parallax-free illumination   

– No self-reflections, distortion of near 
objects 

• Option: Separate map per object 
– Often necessary to be reasonably accurate 

– Reflections of other objects 

– Maps must be recomputed after changes 

• Mirror reflections 
– Surface curvature: beam tracing 

– Map filtering 
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Reflection Map Acquisition 
• Generating spherical maps (original 1982/83) 

– I.e. photo of a reflecting sphere (gazing ball) 
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Reflection Map Rendering 
• Spherical parameterization 

• O-mapping using reflected view ray intersection 
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Reflection Map Parameterization 
• Spherical mapping 

– Single image 

– Bad utilization of the image area 

– Bad scanning on the edge 

– Artifacts, if map and image do not 
have the same view point 

• Double parabolic mapping 
– Yields spherical parameterization 

– Subdivide in 2 images (front-facing and back-facing sides) 

– Less bias near the periphery 

– Arbitrarily reusable 

– Supported by OpenGL extensions 
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Reflection Map Parameterization 
• Cubical environment map, cube map, box map 

– Enclose object in cube 

– Images on faces are easy to compute 

– Poorer filtering at edges 

– Support in OpenGL 
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Reflection Mapping Example 
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Terminator II motion picture 



Reflection Mapping Example II 
• Reflection mapping with Phong reflection 

– Two maps: diffuse & specular 

– Diffuse: index by surface normal 

– Specular: indexed by reflected view vector 
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RenderMan 

Companion 



Ray Tracing vs. Reflection Map 
• Differences ? 

 

27 



Recursive Ray Tracing 
• How to fake it with reflection mapping? 
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Light Maps 
• Light maps (e.g. in Quake) 

– Pre-calculated illumination (local irradiance) 

• Often very low resolution: smoothly varying 

– Multiplication of irradiance with base texture 

• Diffuse reflectance only 

– Provides surface radiosity 

• View-independent out-going radiance 

– Animated light maps 

• Animated shadows, moving light spots, etc… 
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Reflectance Irradiance Radiosity 
Representing radiosity 
in a mesh or texture 

mesh 

texture 



• Modulation of the normal vector 
– Surface normals changed only 

• Influences shading only 

• No self-shadowing, contour is not altered 

 

Bump Mapping 
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Bump Mapping 
• Original surface: O(u,v) 

– Surface normals are known 

• Bump map: B(u,v) ϵ R 
– Surface is offset in normal direction 

according to bump map intensity 

– New normal directions N’(u,v) are 
calculated based on virtually displaced 
surface O’(u,v) 

– Original surface is rendered with new 
normals N’(u,v) 
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Grey-valued texture used for bump height 



Bump Mapping 
 
– Normal is cross-product of derivatives: 

 

 

 

 

– If B is small (i.e. the bump map 
displacement function is small 
compared to its spatial extent) the last 
term in each equation can be ignored 

 
 

 

– The first term is the normal to the 
surface and the last is zero, giving: 
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Texture Examples 
• Complex optical effects 

– Combination of multiple texture effects 
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RenderMan Companion 



• Single textured polygons 
– Often with opacity texture 

– Rotates, always facing viewer 

– Used for rendering distant objects 

– Best results if approximately radially or 
spherically symmetric 

• Multiple textured polygons 
– Azimuthal orientation: different view-points 

– Complex distribution: trunk, branches, … 

Billboards 
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3-D Textures 
• “Carving object shape out of material block” 
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Texture Examples 
• Solid 3D textures (wood, marble) 

• Bump map (middle) 
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RenderMan Companion 



Procedural Methods 

Part II 



Texture Maps | Procedural Textures 

• Texture maps: paintings, photos, videos, simulation... 
– Simple acquisition 

– Illumination “frozen” during acquisition 

– Limited resolution, aliasing 

– High memory requirements 

– Mapping issues 

• Procedural textures 
– Non-trivial programming 

– Flexibility & parametric control 

– Unlimited resolution 

– Anti-aliasing possible 

– Low memory requirements 

– Low-cost visual complexity 

– Can adapt to arbitrary geometry 

 

38 



Procedural Textures 
• Function of some shading parameter 

– E.g. world space, texture coordinates, ... 

• Texturing: evaluation of function on object surface 
– Ray tracing: at intersection point with surface 
– Must be able to evaluate at random position efficiently 

• Observation: textures of natural objects 
– Similarity between patches at different locations 

• Repetitiveness, coherence (e.g. skin of a tiger or zebra) 

– Similarity on different resolution scales 
• Self-similarity 

– But never completely identical 
• Additional disturbances, turbulence, noise 

• Goal: generic procedural texture function 
– Mimics statistical properties of natural textures 
– Purely empirical approach 

• Looks convincing, but has nothing to do with material’s physics 
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Texture Examples 
• Translational similarity 

 

 

 

 

 

• Similarity on different scales 
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Romanesco broccoli [Wikipedia] 



3D / Solid Noise: Perlin Noise 
• Noise(x,y,z) 

– Statistical invariance under rotation 
– Statistical invariance under translation 
– Roughly one specific frequency 

• Integer lattice (i,j,k) 
– Fixed fundamental frequency of ~1 Hz over lattice 
– Don’t store all values – use a hash function to randomize and 

look up from a fixed-size table 
– Value noise: Random value at lattice 
– Gradient noise: Random gradient vector at lattice point Q: G(Q) 

• Value at point P: G·(P-Q) 

– Tri-linear interpolation or cubic interpolation 
• Hermite spline → later 

• Unlimited domain due to lattice and hashing 

• Also see 
– http://www.noisemachine.com/talk1/ 
– http://www.cs.cmu.edu/~mzucker/code/perlin-noise-math-faq.html 

41 



Noise vs. Noise 
• Gradient noise better than value noise 

– Less regularity artifacts 

– More high frequencies in noise spectrum 

– Even tri-linear interpolation produces good results 

 

• Comparison between random values and Perlin noise 
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Random values 
at each pixel 

Gradient noise 



Turbulence Function 
•
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Synthesis of Turbulence (1D) 
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Synthesis of Turbulence (2D) 
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Example: Marble Texture Function 

• Overall structure: alternating layers of  
white and colored marble 
– fmarble(x,y,z) := marble_color(sin(x)) 

– marble_color : transfer function (see lower left) 

• Realistic appearance: simulated turbulence 
– fmarble(x,y,z) := marble_color(sin(x+turbulence(x,y,z))) 

• Moving object: turbulence function also transformed 
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Further Procedural Texturing Applications 

• Bark 
– Turbulated sawtooth function 

– Bump mapping 

• Clouds 
– White blobs 

– Turbulated transparency along edge 

– Transparency mapping 

• Animation 
– Vary procedural texture function’s parameters over time 
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Fractal Landscapes 
• Procedural generation of geometry 

• Complex geometry at virtually no memory cost 
– Can be difficult to ray trace !! 
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• Coarse triangle mesh approximation 

• 1:4 triangle subdivision 
– Vertex insertion at edge-midpoints 

• New vertex perturbation 
– Random displacement along normal 

– Scale of perturbation depends on  
subdivision level 

• Decreasing power spectrum 

• Parameter models surface roughness 

• Recursive subdivision 
– Level of detail (LOD) determined by # subdivisions 

• All done inside renderer ! 
– LOD generated locally when/where needed (bounding box test) 

– Minimal I/O cost (coarse mesh only) 

 

Fractal Landscapes 
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Fractal Landscapes 
• Triangle subdivision 

– Insert new vertices at edge midpoints 

– 1:4 triangle subdivision 

 

 

 

 

• Vertex displacement 
– Along original triangle normal 
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Courtesy http://www.uni-paderborn.de/SFB376/projects/a2/zBufferMerging/ 



Fractal Landscape Generation 
• Base mesh 

• Repeated subdivision & 
vertex displacement 

• Shading + Water surface 

 + Fog + … 
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Courtesy http://www.uwp.edu/academic/computer.science/morris.csci/CS.320/Week.11/Ch11b.www/Ch11b.html 



Fractal Landscape Ray Tracing 
• Fractal terrain generated on-the-fly 

• Problem: where is the ray-surface interaction ? 
– Triangle mesh not a-priori known 

• Solution: bounding boxes 
– Maximum possible bounding box around each triangle 

– Decreasing displacement amplitude: finite bounding box 

• Algorithm 
– Intersect ray with bounding box 

– If hit, subdivide corresponding triangle 

– Compute bounding boxes of 4 new triangles 

– Test against 4 new bounding boxes 

– Iterate until termination criterion fulfilled (LOD / pixel size) 
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