Computer Graphics

1 [- Texturing Methods -

Overview

e Lasttime
— BRDFs
— Shading

« Today
— Texturing
» Texture parameterization
— Procedural methods
* Procedural textures
» Fractal landscapes

* Next lecture
— Texture filtering
— Alias & signal processing

TEXTURING

Simple lllumination

* No illumination
« Constant colors

« Parallel light
« Diffuse reflection

Standard lHlumination

« Parallel light
« Specular reflection

 Multiple local light sources
« Different BRDFs

 Object properties constant
over surface

Texturing

« Varying object properties
— 2D image reflectance textures
— Bump-mapping

- Environment characteristics | Sl
— Shadows
— Reflection textures

Texture-Modulated Quantities

 Modulation of object surface properties

» Reflectance
— Diffuse reflection coefficient k
— Specular reflection coefficient kg
 Opacity (a)
— Modulating transparency (e.g. for fences)
 Normal vector
— Bump mapping: N’(P) =N(P +tN) (in normal direction, height)
— Normal mapping:N’=N+ AN (arbitrary offset)
« Geometry
— Displacement mapping: P'=P+AP

« Distant illumination
— Environment mapping / reflection mapping

2D Texture Mapping

Texture space Object space Screcn space
[, vl {0, Ve D) Y

Forward mapping

-

Surface
parametrization

E/ ‘ -1‘1_11.-1‘1'5-: mnppE. B Pixel J

‘Pre-image’ of pixel

 Forward mapping
— Object surface parameterization
— Projective transformation

* Inverse mapping
— Find corresponding pre-image/footprint of each pixel in texture
— Integrate over pre-image

Projection —

Forward Mapping

« Maps each texel to its position in the image

« Uniform sampling of texture space does not
guarantee uniform sampling in screen space
— Can create holes, need to scan-convert (see later)

 Possibly used if
— The texture-to-screen mapping is difficult to invert
— The texture image does not fit into memory
* Process texture in tiles in order

texture space — image space

Texture scanning: =

for v | B '
for u —.

compute x(u,v) and y(u,v)

copy TEX][u,v] to SCR[X,y] | .

—

| ~
| e A

Surface Parameterization

 To apply textures we need 2D coordinates on
surfaces

— Parameterization

« Some objects have a natural parameterization

— Sphere: spherical coordinates (¢, 8) = (2 u, V)

— Cylinder: cylindrical coordinates (¢, h) = (2 mu, Hv)

— Parametric surfaces (such as B-spline or Bezier surfaces — later)
 Parameterization is less obvious for

— Polygons, implicit surfaces, teapots...

10

Triangle Parameterization

« Triangle is a planar object
— Has implicit parameterization (e.g. barycentric coordinates)
— But we need more control: placement of triangle in texture space

« Assign texture coordinates (u,v) to each vertex (X,,Y,.Z,)
* Apply viewing projection (x,,Y,,Z,) — (X,y) (details later)
* Yields full texture transformation (warping) (u,v) — (X,y)
[au+ bv +c¢ du+ev+f]
X = - y = -
gu+hv+i gu+hv+1i J
— In homogeneous coordinates (by embedding (u,v) as (u,v,1))

x a b cl|l|u oA 1.1
- -2y eonte
w q

g h i
<
— Transformation coefficients determined by 3 pairs (u,v)—(X,y)
* Three linear equations
* Invertible iff neither set of points is collinear

Triangle Parameterization (2)

Given

X'

/
y
w

a b cllu
d e f||v
g h i]|q

The inverse transform (x,y)—(u,v) is
] l ch—bi bf —ce

x!

fg— dl ai—cg cd—af
dh—eg bg—ah ae—bd

w

Coefficients must be calculated for each triangle
— Rasterization

* Incremental bilinear update of (u’,v’,q) in screen space

» Using the partial derivatives of the linear function (i.e. constants)
— Ray tracing

« Evaluated at every intersection
Often derivatives are needed as well
— Explicitly given in matrix

12

Cylinder Parameterization

« Transformation from texture space to the cylinder
parametric representation can be written as:

Texture space Object space

(6,h) = (2nu, vH)

« where H is the height
of the cylinder.

« The surface coordinates in
the Cartesian reference
frame can be uniquely
expressed as:

X, =1rcosf
Y, =1sinf
Z, =h

13

Two-Stage Mapping

* Inverse mapping for arbitrary 3D surfaces too complex

« Approximation technique is used.:
— Mapping from 2D texture space to a simple 3D intermediate surface
(S mapping)
« Should be a reasonable approximation of the destination surface
« E.g.: plane, cylinder, sphere, cube, ...
 Mapping from the intermediate surface to the
destination object surface (O mapping)

2D texture map

s s 0
EEEEEE R — Intermediate
S surface

14

O-Mapping

 Determine point on intermediate surface through
— Reflected view ray
» Reflection or environment mapping
— Normal mapping
— Line through object centroid

— Shrink-wrapping T |
» Forward mapping \&‘\ y\mlndl /\,\
* Normal mapping from (s Yo 20 . /v(\)
intermediate surface
Object
(1) Reflected ray (2) Object normal

(3) Object centroid (4) Intermediate surface normal

15

Two-Stage Mapping: Problems

« May introduce undesired texture distortions if the
Intermediate surface differs too much from the
destination surface

« Still often used in practice because of its simplicity

Planar Intermediate Surface

Object
Surface

/\

Texture
runs
forwards

Texture
runs
backwards

Surface concavities can cause the texture
pattern to reverse if the object normal mapping is
used.

16

Two-Stage Mapping. Example

Different intermediate surfaces

Plane

— Strong distortion where object surface normal L to plane normal
Cylinder

— Reasonably uniform mapping (symmetry !)

Sphere

— Problems with concave regions

17

Projective Textures

* Project texture onto ¥ Avm—

object surfaces /;

— Slide projector I, @/%2\/2
e P ' el = T

argllel_ or perspective _~
projection |
Y T(u,v) T, v)

« Use photographs as - om

textures W

y
Plane of symmetry

(b)
* Multiple images
— View-dependent texturing I
(advanced topic) =
_é/;’% Rendered
 Perspective mapping . !

18

Projective Texturing: Examples

' My
Wy

Reflection Mapping

Also called “environment mapping”

Reflection map parameterization
— Intermediate surface in 2-stage mapping
— Often cube, sphere, or double paraboloid

Assumption: Distant illumination
— Parallax-free illumination

— No self-reflections, distortion of near
objects

Option: Separate map per object
— Often necessary to be reasonably accurate

— Reflections of other objects
— Maps must be recomputed after changes

Mirror reflections
— Surface curvature: beam tracing
— Map filtering

Reflection Map Acqguisition

« Generating spherical maps (original 1982/83)
— l.e. photo of a reflecting sphere (gazing ball)

21

Reflection Map Rendering

 Spherical parameterization
« O-mapping using reflected view ray intersection

£\ Kamera

E(W,R)
=f(¢,0)

Objekt W Welt-
mittel—

punkt

Reflection Map auf der
Innenflache einer virtuellen
Kugel K

22

Reflection Map Parameterization

« Spherical mapping
— Single image

— Bad utilization of the image area

— Bad scanning on the edge
— Atrtifacts, if map and image do not ‘ ‘
have the same view point

 Double parabolic mapping
— Yields spherical parameterization
— Subdivide in 2 images (front-facing and back-facing sides)
— Less bias near the periphery
— Arbitrarily reusable
— Supported by OpenGL extensions

23

Reflection Map Parameterization

« Cubical environment map, cube map, box map
— Enclose object in cube

— Images on faces are easy to compute

— Poorer filtering at edges
— Support in OpenGL

£\ Kamera

B E
Vo R,
Vi N 5
Sichtkegel rSeiI:I:::(Izleegneellr
(—pyramide) (-pyramide)
F
. e W Welt-
Objekt mittel-
punkt

Environment Map auf der
Innenflache eines virtuellen
Wirfels C

Reflection beam

|

Texture arca subtended
by reflection beam

24

Reflection Mapping Example

Terminator I motion picture

25

Reflection Mapping Example Il

« Reflection mapping with Phong reflection
— Two maps: diffuse & specular
— Diffuse: index by surface normal
— Specular: indexed by reflected view vector

26

Ray Tracing vs. Reflection Map

 Differences ?

27

ecursive Ray Tracing

How to fake it with reflection mapping?

R

Figure 18.11

A recursive depth demenstration. The trace terminates at depth 2, 3, 4 and 5 (zoom image) respectively. ‘Unassigned’ oixels are co
grey. Bad aliasing as a function of recursive depth (the light cable) is apparent.

28

Light Maps

* Light maps (e.g. in Quake)

— Pre-calculated illumination (local irradiance)
» Often very low resolution: smoothly varying

— Multiplication of irradiance with base texture
 Diffuse reflectance only

— Provides surface radiosity
* View-independent out-going radiance

— Animated light maps
« Animated shadows, moving light spots, etc...

Reflectance Irradiance Radiosity
. . Representing radiosity
B(X) — p(x) E(X) — T[Lo (X) In a mesh or texture

29

Bump Mapping

 Modulation of the normal vector
— Surface normals changed only
 Influences shading only
» No self-shadowing, contour is not altered

30

Bump Mapping

« Original surface: O(u,v)
— Surface normals are known
« Bump map: B(u,v) eR
— Surface is offset in normal direction
according to bump map intensity

— New normal directions N’(u,v) are

calculated based on virtually displaced

surface O’(u,v)

— Original surface is rendered with new

normals N’(u,v)

|

AT T

PR

0(u)

Original surface

B(u)
A bump map

0'(u)

Lengthening or shortening
O(u) using B(u)

‘ NI(U]
The vectors to the
‘new’ surface

for’bump height

31

Bump Mapping

N
0'(u,v) =0(u,v)+ B(u, ’D)W
— Normal is cross-product of derivatives:

0! =0, + B,— +B(N)
“IN| IN|

0, =0, + By~ +B (N)
"IN IN|
— If B is small (i.e. the bump map
displacement function is small
compared to its spatial extent) the last
term in each equation c}%n be iinored

N’(u,v) =0,X0,+ B, (WXO

N N XN
+ B, (O X |N|)+B”B"(IN|?)
— The first term is the normal to the
surface and the last is zero, giving:
D = B,(N x 0,) —B,(N x 0,)
N' =N+D

2P Ta

o
s

0(u)

Oniginal surface

B(u)
A bump map

L, Lnyhunmg or shortening
O(u) using B(u)

The vectors to the
‘new’ surface

Texture Examples

« Complex optical effects
— Combination of multiple texture effects

@_

PLASTIC COATED

S

Billboards

Single textured polygons
— Often with opacity texture
— Rotates, always facing viewer
— Used for rendering distant objects
— Best results if approximately radially or
spherically symmetric
Multiple textured polygons

— Azimuthal orientation: different view-points
— Complex distribution: trunk, branches, ...

34

3-D Textures

« “Carving object shape out of material block”

Texture Examples

« Solid 3D textures (wood, marble)
« Bump map (middle)

RenderMan Companion

36

Part Il

Procedural Methods

Texture Maps | Procedural Textures

« Texture maps: paintings, photos, videos, S|mulat|on
— Simple acquisition
— lllumination “frozen” during acquisition
— Limited resolution, aliasing
— High memory requirements
— Mapping issues

* Procedural textures
— Non-trivial programming
— Flexibility & parametric control
— Unlimited resolution
— Anti-aliasing possible
— Low memory requirements
— Low-cost visual complexity
— Can adapt to arbitrary geometry

38

Procedural Textures

Function of some shading parameter
— E.g. world space, texture coordinates, ...

Texturing: evaluation of function on object surface
— Ray tracing: at intersection point with surface
— Must be able to evaluate at random position efficiently

Observation: textures of natural objects
— Similarity between patches at different locations
» Repetitiveness, coherence (e.g. skin of a tiger or zebra)
— Similarity on different resolution scales
« Self-similarity
— But never completely identical
 Additional disturbances, turbulence, noise

Goal: generic procedural texture function
— Mimics statistical properties of natural textures
— Purely empirical approach
» Looks convincing, but has nothing to do with material’s physics

Texture Examples

« Translational similarity

« Similarity on different scales

fritiator

.
Romanesco broccoli [Wikipedia]

AN
A 0303

40

3D / Solid Noise: Perlin Noise

« Noise(x,y,z) N padl

— Statistical invariance under rotation \/\/

— Statistical invariance under translation
— Roughly one specific frequency

 Integer lattice (i,j,k) ‘/\/’\j\,
— Fixed fundamental frequency of ~1 Hz over lattice

— Don'’t store all values — use a hash function to randomize and
look up from a fixed-size table

— Value noise: Random value at lattice

— Gradient noise: Random gradient vector at lattice point Q: G(Q)
» Value at point P: G-(P-Q)

— Tri-linear interpolation or cubic interpolation
* Hermite spline — later

« Unlimited domain due to lattice and hashing

 Also see
— http://www.noisemachine.com/talkl/
— http://www.cs.cmu.edu/~mzucker/code/perlin-noise-math-faqg.html

41

Noise vs. Noise

« Gradient noise better than value noise
— Less regularity artifacts
— More high frequencies in noise spectrum
— Even tri-linear interpolation produces good results

Random values Gradient noise
at each pixel

42

Turbulence Function

s Noise function
— Single spike in frequency spectrum
* Natural textures
— Decreasing power spectrum towards
high frequencies
* Turbulence from noise
— Turbulence(x) = XX ,|a; * noise(f; x)|
« Frequency: f; = 2
« Amplitude: a; = 1/ p*
» Persistence: p typically p=2
— Summation truncation
* 1st term: noise(x)
* 2nd term: noise(2x)/2
» Until period (1/f;) < 2 pixel-size (band limit)
— Power spectrum: aq; =1/ f;
— Brownian motion: a; = 1/ f?

43

Synthesis of Turbulence (1D)

Amplitude - 128 Amplitude - 64 Amplitude - 32
frequency : 4 frequency : 8 frequency : 18

Amplitude - 16 Amplitude - 8 Sum of Moise Functions = (Perlin Noise)
frequency : 32 frequency : B4

N s SRR I A = e e = e
Jﬁ,,_,ﬂ-'f“ﬂ_. S R H\ e B g e R e i e e SN

(o

44

Synthesis of Turbulence (2D

45

Example: Marble Texture Function

« Overall structure: alternating layers of
white and colored marble
— Tamie(X:¥;2) := marble_color(sin(x))
— marble_color : transfer function (see lower left)
* Realistic appearance: simulated turbulence
— Tamie(X:¥:2) := marble_color(sin(x+turbulence(x,y,z)))

 Moving object: turbulence function also transformed

46

Further Procedural Texturing Applications

« Bark
— Turbulated sawtooth function
— Bump mapping
 Clouds
— White blobs
— Turbulated transparency along edge
— Transparency mapping

* Animation
— Vary procedural texture function’s parameters over time

47

Fractal Landscapes

 Procedural generation of geometry

« Complex geometry at virtually no memory cost
— Can be difficult to ray trace !!

48

Fractal Landscapes

« Coarse triangle mesh approximation
1:4 triangle subdivision

— Vertex insertion at edge-midpoints

New vertex perturbation

— Random displacement along normal

— Scale of perturbation depends on
subdivision level

» Decreasing power spectrum
« Parameter models surface roughness

Recursive subdivision
— Level of detail (LOD) determined by # subdivisions

All done inside renderer !

— LOD generated locally when/where needed (bounding box test)
— Minimal I/O cost (coarse mesh only)

Fractal Landscapes

* Triangle subdivision
— Insert new vertices at edge midpoints
— 1:4 triangle subdivision

* Vertex displacement
— Along original triangle normal

=
-
o~

=
-
-~
-
'
-
-~
-
2 il

Courtesy http://www.uni-paderborn.de/SFB376/projects/a2/zBufferMerging/

50

Fractal Landscape Generation
« Base mesh \ /

 Repeated subdivision &
vertex displacement

« Shading + Water surface

+ Fog + ...

ANy,

S, iy D
&A‘&?,‘&E;_—J,.a*‘# TA‘*#%*; =
Ry AN e N Ay s ke Ay A
ﬁ}%‘%}%}ﬁﬁ?{%ﬁ:«_fﬁﬁg‘;ﬁ%‘:ﬁ%ﬁg«‘h‘
RSN RN
e *‘,‘Tﬂ!‘p . --7‘: \‘:}"4‘. «-\‘."
TS e A A
SR
AL

Courtesy http://mww.uwp.edu/academic/computer.science/morris.csci/CS.320/Week.11/Ch11b.www/Ch11b.html

Fractal Landscape Ray Tracing

Fractal terrain generated on-the-fly

Problem: where is the ray-surface interaction ?
— Triangle mesh not a-priori known

Solution: bounding boxes
— Maximum possible bounding box around each triangle
— Decreasing displacement amplitude: finite bounding box

Algorithm
— Intersect ray with bounding box
— If hit, subdivide corresponding triangle
— Compute bounding boxes of 4 new triangles
— Test against 4 new bounding boxes
— lterate until termination criterion fulfilled (LOD / pixel size)

