

Computer Graphics

 †- Texturing Methods -

Overview
• Last time

– BRDFs

– Shading

• Today
– Texturing

• Texture parameterization

– Procedural methods

• Procedural textures

• Fractal landscapes

• Next lecture
– Texture filtering

– Alias & signal processing

2

TEXTURING

3

Simple Illumination
• No illumination

• Constant colors

• Parallel light

• Diffuse reflection

4

Standard Illumination
• Parallel light

• Specular reflection

• Multiple local light sources

• Different BRDFs

• Object properties constant
 over surface

5

Texturing
• Varying object properties

– 2D image reflectance textures

– Bump-mapping

• Environment characteristics
– Shadows

– Reflection textures

6

Texture-Modulated Quantities
• Modulation of object surface properties

• Reflectance
– Diffuse reflection coefficient kd

– Specular reflection coefficient ks

• Opacity (α)
– Modulating transparency (e.g. for fences)

• Normal vector
– Bump mapping: N’(P) = N(P + t N) (in normal direction, height)

– Normal mapping: N’ = N + Δ N (arbitrary offset)

• Geometry
– Displacement mapping: P’ = P + Δ P

• Distant illumination
– Environment mapping / reflection mapping

7

2D Texture Mapping

• Forward mapping
– Object surface parameterization
– Projective transformation

• Inverse mapping
– Find corresponding pre-image/footprint of each pixel in texture
– Integrate over pre-image

8

Forward Mapping
• Maps each texel to its position in the image

• Uniform sampling of texture space does not
guarantee uniform sampling in screen space
– Can create holes, need to scan-convert (see later)

• Possibly used if
– The texture-to-screen mapping is difficult to invert

– The texture image does not fit into memory

• Process texture in tiles in order

• Texture scanning:

• for v

• for u

• compute x(u,v) and y(u,v)

• copy TEX[u,v] to SCR[x,y]

9

Surface Parameterization
• To apply textures we need 2D coordinates on

surfaces

 → Parameterization

• Some objects have a natural parameterization
– Sphere: spherical coordinates (φ, θ) = (2π u, π v)

– Cylinder: cylindrical coordinates (φ, h) = (2 π u, H v)

– Parametric surfaces (such as B-spline or Bezier surfaces → later)

• Parameterization is less obvious for
– Polygons, implicit surfaces, teapots…

10

Triangle Parameterization
• Triangle is a planar object

– Has implicit parameterization (e.g. barycentric coordinates)
– But we need more control: placement of triangle in texture space

• Assign texture coordinates (u,v) to each vertex (xo,yo,zo)

• Apply viewing projection (xo,yo,zo) → (x,y) (details later)

• Yields full texture transformation (warping) (u,v) → (x,y)

– In homogeneous coordinates (by embedding (u,v) as (u,v,1))

– Transformation coefficients determined by 3 pairs (u,v)→(x,y)

• Three linear equations

• Invertible iff neither set of points is collinear

11

Triangle Parameterization (2)
• Given

• The inverse transform (x,y)→(u,v) is

• Coefficients must be calculated for each triangle
– Rasterization

• Incremental bilinear update of (u’,v’,q) in screen space

• Using the partial derivatives of the linear function (i.e. constants)

– Ray tracing
• Evaluated at every intersection

• Often derivatives are needed as well
– Explicitly given in matrix

12

Cylinder Parameterization
• Transformation from texture space to the cylinder

parametric representation can be written as:

• where H is the height
of the cylinder.

• The surface coordinates in
the Cartesian reference
frame can be uniquely
expressed as:

13

Two-Stage Mapping
• Inverse mapping for arbitrary 3D surfaces too complex

• Approximation technique is used:
– Mapping from 2D texture space to a simple 3D intermediate surface

(S mapping)

• Should be a reasonable approximation of the destination surface

• E.g.: plane, cylinder, sphere, cube, ...

• Mapping from the intermediate surface to the
destination object surface (O mapping)

14

O S

O-Mapping
• Determine point on intermediate surface through

– Reflected view ray

• Reflection or environment mapping

– Normal mapping

– Line through object centroid

– Shrink-wrapping

• Forward mapping

• Normal mapping from
 intermediate surface

15

Two-Stage Mapping: Problems
• May introduce undesired texture distortions if the

intermediate surface differs too much from the
destination surface

• Still often used in practice because of its simplicity

16

Two-Stage Mapping: Example
• Different intermediate surfaces

• Plane
– Strong distortion where object surface normal to plane normal

• Cylinder
– Reasonably uniform mapping (symmetry !)

• Sphere
– Problems with concave regions

17

Projective Textures
• Project texture onto

object surfaces
– Slide projector

• Parallel or perspective
projection

• Use photographs as
textures

• Multiple images
– View-dependent texturing

(advanced topic)

• Perspective mapping

18

Projective Texturing: Examples

19

Reflection Mapping
• Also called “environment mapping”

• Reflection map parameterization
– Intermediate surface in 2-stage mapping

– Often cube, sphere, or double paraboloid

• Assumption: Distant illumination
– Parallax-free illumination

– No self-reflections, distortion of near
objects

• Option: Separate map per object
– Often necessary to be reasonably accurate

– Reflections of other objects

– Maps must be recomputed after changes

• Mirror reflections
– Surface curvature: beam tracing

– Map filtering

20

Reflection Map Acquisition
• Generating spherical maps (original 1982/83)

– I.e. photo of a reflecting sphere (gazing ball)

21

Reflection Map Rendering
• Spherical parameterization

• O-mapping using reflected view ray intersection

22

Reflection Map Parameterization
• Spherical mapping

– Single image

– Bad utilization of the image area

– Bad scanning on the edge

– Artifacts, if map and image do not
have the same view point

• Double parabolic mapping
– Yields spherical parameterization

– Subdivide in 2 images (front-facing and back-facing sides)

– Less bias near the periphery

– Arbitrarily reusable

– Supported by OpenGL extensions

23

Reflection Map Parameterization
• Cubical environment map, cube map, box map

– Enclose object in cube

– Images on faces are easy to compute

– Poorer filtering at edges

– Support in OpenGL

24

Reflection Mapping Example

25

Terminator II motion picture

Reflection Mapping Example II
• Reflection mapping with Phong reflection

– Two maps: diffuse & specular

– Diffuse: index by surface normal

– Specular: indexed by reflected view vector

26

RenderMan

Companion

Ray Tracing vs. Reflection Map
• Differences ?

27

Recursive Ray Tracing
• How to fake it with reflection mapping?

28

Light Maps
• Light maps (e.g. in Quake)

– Pre-calculated illumination (local irradiance)

• Often very low resolution: smoothly varying

– Multiplication of irradiance with base texture

• Diffuse reflectance only

– Provides surface radiosity

• View-independent out-going radiance

– Animated light maps

• Animated shadows, moving light spots, etc…

29

Reflectance Irradiance Radiosity
Representing radiosity
in a mesh or texture

mesh

texture

• Modulation of the normal vector
– Surface normals changed only

• Influences shading only

• No self-shadowing, contour is not altered

Bump Mapping

30

Bump Mapping
• Original surface: O(u,v)

– Surface normals are known

• Bump map: B(u,v) ϵ R
– Surface is offset in normal direction

according to bump map intensity

– New normal directions N’(u,v) are
calculated based on virtually displaced
surface O’(u,v)

– Original surface is rendered with new
normals N’(u,v)

31

Grey-valued texture used for bump height

Bump Mapping

– Normal is cross-product of derivatives:

– If B is small (i.e. the bump map
displacement function is small
compared to its spatial extent) the last
term in each equation can be ignored

– The first term is the normal to the
surface and the last is zero, giving:

32

Texture Examples
• Complex optical effects

– Combination of multiple texture effects

33

RenderMan Companion

• Single textured polygons
– Often with opacity texture

– Rotates, always facing viewer

– Used for rendering distant objects

– Best results if approximately radially or
spherically symmetric

• Multiple textured polygons
– Azimuthal orientation: different view-points

– Complex distribution: trunk, branches, …

Billboards

34

3-D Textures
• “Carving object shape out of material block”

35

David Ebert

Texture Examples
• Solid 3D textures (wood, marble)

• Bump map (middle)

36

RenderMan Companion

Procedural Methods

Part II

Texture Maps | Procedural Textures

• Texture maps: paintings, photos, videos, simulation...
– Simple acquisition

– Illumination “frozen” during acquisition

– Limited resolution, aliasing

– High memory requirements

– Mapping issues

• Procedural textures
– Non-trivial programming

– Flexibility & parametric control

– Unlimited resolution

– Anti-aliasing possible

– Low memory requirements

– Low-cost visual complexity

– Can adapt to arbitrary geometry

38

Procedural Textures
• Function of some shading parameter

– E.g. world space, texture coordinates, ...

• Texturing: evaluation of function on object surface
– Ray tracing: at intersection point with surface
– Must be able to evaluate at random position efficiently

• Observation: textures of natural objects
– Similarity between patches at different locations

• Repetitiveness, coherence (e.g. skin of a tiger or zebra)

– Similarity on different resolution scales
• Self-similarity

– But never completely identical
• Additional disturbances, turbulence, noise

• Goal: generic procedural texture function
– Mimics statistical properties of natural textures
– Purely empirical approach

• Looks convincing, but has nothing to do with material’s physics

39

Texture Examples
• Translational similarity

• Similarity on different scales

40

Romanesco broccoli [Wikipedia]

3D / Solid Noise: Perlin Noise
• Noise(x,y,z)

– Statistical invariance under rotation
– Statistical invariance under translation
– Roughly one specific frequency

• Integer lattice (i,j,k)
– Fixed fundamental frequency of ~1 Hz over lattice
– Don’t store all values – use a hash function to randomize and

look up from a fixed-size table
– Value noise: Random value at lattice
– Gradient noise: Random gradient vector at lattice point Q: G(Q)

• Value at point P: G·(P-Q)

– Tri-linear interpolation or cubic interpolation
• Hermite spline → later

• Unlimited domain due to lattice and hashing

• Also see
– http://www.noisemachine.com/talk1/
– http://www.cs.cmu.edu/~mzucker/code/perlin-noise-math-faq.html

41

Noise vs. Noise
• Gradient noise better than value noise

– Less regularity artifacts

– More high frequencies in noise spectrum

– Even tri-linear interpolation produces good results

• Comparison between random values and Perlin noise

42

Random values
at each pixel

Gradient noise

Turbulence Function
•

43

Synthesis of Turbulence (1D)

44

Synthesis of Turbulence (2D)

45

Example: Marble Texture Function

• Overall structure: alternating layers of
white and colored marble
– fmarble(x,y,z) := marble_color(sin(x))

– marble_color : transfer function (see lower left)

• Realistic appearance: simulated turbulence
– fmarble(x,y,z) := marble_color(sin(x+turbulence(x,y,z)))

• Moving object: turbulence function also transformed

46

Further Procedural Texturing Applications

• Bark
– Turbulated sawtooth function

– Bump mapping

• Clouds
– White blobs

– Turbulated transparency along edge

– Transparency mapping

• Animation
– Vary procedural texture function’s parameters over time

47

Fractal Landscapes
• Procedural generation of geometry

• Complex geometry at virtually no memory cost
– Can be difficult to ray trace !!

48

• Coarse triangle mesh approximation

• 1:4 triangle subdivision
– Vertex insertion at edge-midpoints

• New vertex perturbation
– Random displacement along normal

– Scale of perturbation depends on
subdivision level

• Decreasing power spectrum

• Parameter models surface roughness

• Recursive subdivision
– Level of detail (LOD) determined by # subdivisions

• All done inside renderer !
– LOD generated locally when/where needed (bounding box test)

– Minimal I/O cost (coarse mesh only)

Fractal Landscapes

49

Fractal Landscapes
• Triangle subdivision

– Insert new vertices at edge midpoints

– 1:4 triangle subdivision

• Vertex displacement
– Along original triangle normal

50

Courtesy http://www.uni-paderborn.de/SFB376/projects/a2/zBufferMerging/

Fractal Landscape Generation
• Base mesh

• Repeated subdivision &
vertex displacement

• Shading + Water surface

 + Fog + …

51

Courtesy http://www.uwp.edu/academic/computer.science/morris.csci/CS.320/Week.11/Ch11b.www/Ch11b.html

Fractal Landscape Ray Tracing
• Fractal terrain generated on-the-fly

• Problem: where is the ray-surface interaction ?
– Triangle mesh not a-priori known

• Solution: bounding boxes
– Maximum possible bounding box around each triangle

– Decreasing displacement amplitude: finite bounding box

• Algorithm
– Intersect ray with bounding box

– If hit, subdivide corresponding triangle

– Compute bounding boxes of 4 new triangles

– Test against 4 new bounding boxes

– Iterate until termination criterion fulfilled (LOD / pixel size)

52

