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A COMPARISON OF NORMALS CALCULATION
FOR THE CONSTRUCTION OF INTERPOLANTS

ABOVE TRIANGULAR MESHES

BOHDAL Róbert (SK)

Abstract. In this paper, we compare selected methods for calculation of normal
vectors, which are necessary for the construction of interpolants above the given
triangulation. The normals at individual vertices of the underlying triangulation
greatly affect the shape and the smoothness of the resulting interpolation surface.
We compare results of selected methods for normals calculation with analytically
calculated normals of test functions. We also calculate the difference between
the created interpolants and the corresponding test functions. The best results
were achieved by the method of calculating normals using the local thin plate
interpolation spline. The weighted average method, created by combining
Little’s and Max’s method came as the second in order.

Keywords: normals calculation, thin plate spline, Clough-Tocher, Powell-Sabin

Mathematics subject classification: Primary 65D05; Secondary 65D17

1 Introduction
In many applications, we are often confronted with the problem of scattered points interpo-
lation. In case of a small number of input points, it is usually the best to choose so-called
global interpolation methods, which interpolate the input points using only one function.
The global interpolation methods yield good overall smoothness and accuracy of the inter-
polation. Interpolation methods using radial basis functions [4] such as Hardy multiquadrics
or thin plate splines, etc. are often used. For a bigger number of input points (of the order
ten thousand and more), it is not possible to use global interpolation methods because they
need to solve large systems of equations. In such case, local interpolation methods are used
with an advantage, which use piecewise functions, each interpolates only a few points. The
classical examples are the Clough-Tocher method [1, 8], the Powell-Sabin [1, 10], the natural
neighbour interpolation [7], and others. Many of them require normal vectors at the given
points. Since these vectors are not known, they must be estimated.
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The quality of the created interpolation surfaces (in the sense of visual smoothness, continu-
ity, accuracy, etc.) greatly depends on the accuracy of the calculated normals. The gradient
of the surface in a given point has often a greater influence on the shape of the surface than
the chosen degree of polynomials or the degree of smoothness.

In this paper we compare some known methods for normals calculation. We also suggest
a small modification which includes removing “long and thin” triangles on the boundary of
the given triangulation and removing “unsuitable” normals from the calculations. Next, we
suggest a combination of the Max’s and Little’s method into one formula. We then compare
the calculated normals with the “true” analytical normals, and we also quantify the accuracy
with which the interpolation surfaces using these normals match the test functions.

Jin et al. [5] also compare some methods for normals calculation on the selected test models
with known analytical normals, but their comparison technique is based on the cumulative
histograms of angular discrepancies. Moreover, they exclude vertices of non-closed test
surfaces from the comparison.

2 The methods for normals calculation
There are many methods how to estimate the normals. The most commonly used methods
are weighted average methods and methods using local interpolants and approximants. Other
global methods usually based on minimization of a given integral on the triangular network
are used rarely. Another approach for normal calculation based on the linear regression and
on the finite difference method we can find in the paper [6].

Almost all methods for normals calculation use an in-advance constructed triangulation of
the input points. The normals are then calculated at the triangulation vertices using some
weighted average of the normals of adjacent triangles.

We search such method that is robust enough with respect to input points. It often happens
that the considered triangulation includes “long and thin” triangles on the boundary that
negatively affect the accuracy of calculating normals using the weighted average methods.
Thin triangles have at least one angle much smaller than the other ones. In addition, long
triangles have at least two sides much longer than all other triangles in the triangulation. The
constructed interpolation surface which uses such normals then can create unwanted shapes
on the surfaces boundary, see figure 3(a).

2.1 Normals calculated using weighted average

Weighted average methods use the existing triangulation of the input points. It is good to
use Delaunay triangulation that minimizes the number of “long and thin” triangles, because
it maximizes the minimal angles of all the triangles of the triangulation.

Let we have the vertices Bi[xi, yi, zi] of the triangulation T created from the set of given
points (xi, yi, zi) ∈ E3. According to [3], we can calculate the normals at the vertices by the
formula

n̂i =
∑
Ni

ωijkn4ijk, (1)

where the weight ωijk is calculated from the relation
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Fig. 1. Example of adjacent triangles for calculation n̂1 with indices
belongs to the set N1

ωijk =
σijk∑
Ni
σijk

(2)

and where n4ijk denotes the normal of the triangle BiBjBk. The sum in equation (1) is
enumerated for all triple indices (i, j, k) of the triangulation vertices from the set

Ni =
{
(i, j, k) ∈ N3; j 6= k,

where Bj, Bk meet “selection criterion”} .

The selection criterion includes all the vertices which either create an edge with the vertex
Bi or lie in some neighbourhood of the vertex Bi (see figure 1).

According to [3], the values σijk in formula (2) are given by one of the following possibilities
(see figure 2):

• The arithmetic average (Gouraud)

σijk = 1.

Every triangle contributes with the same weight to the calculated normal.

• The inverse value of lengths (Little)

σijk =
1

|BiBj|r|BiBk|r
,

where r = 1, 2 or 1/2 as a rule. The weight depends inversely on the distance of
triangulation vertices adjacent to the vertex Bi. The longer is the triangle, the less it
contributes to the resulting normal.

• The angle at the vertex (Thurmer)

σijk = αi.

The symbol αi denotes the angle ]BiBjBk at the vertex Bi. The triangle that makes
the biggest angle between the edges BjBi and BkBi contributes the most to the result-
ing normal.
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Fig. 2. Elements of a triangle for calculation of normals

• The area of the triangle (Akima)

σijk = S4BiBjBk
.

The triangle with the greatest surface contributes the most to the resulting normal. The
symbol S4BiBjBk

denotes the area of the triangle BiBjBk.

• The gradient of the surface (Akima2)

σijk = cos θiS4BiBjBk
.

The symbol θi denotes the angle between the z-axis and n4ijk. A triangle whose
normal makes a smaller angle with the z-axis, contributes more to the resulting normal
than one with the same area. This ensures the equality of the triangles which have the
same area in projection to the xy plane.

Max in paper [9] proposes to calculate σijk using the formula

σijk =
sinαi

|BiBj|r|BiBk|r
.

This method prefers triangles whose angle at the vertex Bi approaches the right angle and
whose edges are short.

We can also combine Little’s and Max’s method into one to achieve a better “average accu-
racy”:

σijk =
1 + sinαi

2|BiBj|r|BiBk|r
.

Although weighted average methods have low computational complexity, they give low-
grade results. They are not suitable for triangulations with smaller number of vertices, in
which the gradient of the triangles often changes its direction.
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2.2 Normals calculated using local interpolation or approximation

The next possibility how to estimate a normal at a point Bi is to use a local function fi(x, y),
which interpolates or approximates the set of “close neighbours” of the point Bi, and calcu-
late the normal using partial derivatives:

n̂i =

(
∂fi(xi, yi)

∂x
,
∂fi(xi, yi)

∂y
,−1

)
.

Stead compared several kinds of functions in [13], among them:

• The Shepard’s interpolant

f(x, y) =
n∑
i=1

ωi(x, y)zi,

where the weight ωi is given by ωi(x, y) =
d2i (x,y)∑n
j=1 d

2
j (x,y)

and d2i (x, y) = (x−xi)2+(y−
yi)

2.

• The Hardy’s multiquadrics interpolant

f(x, y) =
n∑
i=1

ci

√
d2i (x, y) +R2,

where the shaping parameter R is given, and the unknowns ci are calculated from a set
of equations following the interpolation conditions f(xi, yi) = zi.

• Linear polynomial function given by the least squares method.

• Quadratic polynomial function given by the least squares method.

According to the performed tests, the best results are achieved by Hardy’s multiquadrics
interpolant.

Instead of Hardy’s multiquadrics φ(d2i (x, y)) =
√
d2i (x, y) +R2 we can use thin plate

splines φ(d2i (x, y)) = d2i (x, y) ln(d
2
i (x, y)) because they do not require estimation of the

parameter R.

Renka and Cline [11] described method for finding the normal at the vertex Bi using partial
derivatives of the quadratic polynomial function f(x, y) = zi + a(x− xi)2 + b(x− xi)(y −
yi) + c(y− yi)2 + d(x− xi) + e(y − yi), which interpolates the vertex Bi and approximates
the set of “close neighbours” in the sense of the least squares method. For each vertex Bj

from the set of neighbour vertices, a weight ωj is calculated so that the furthest vertices do
not contribute to the resulting normal

ωj =
(ri − |BiBj|)+

ri|BiBj|
,

where ri is the radius of neighbourhood influence of the vertex Bi and (·)+ = max{0, ·}.
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2.3 Normals calculated using global methods

We can get the best results for normals estimation if we use global methods which are based
on finding the minimum of appropriate integral functions. An example is the method of
Nielson’s minimum norm network described in [12].

Global methods for estimating normals give better results than local methods, but we have
to solve large systems of equations for their calculation. Moreover, this estimation is only a
little more accurate than results obtained by methods based on local interpolants [3].

3 Testing the methods
For testing purposes, we have used data which were created by 9 test functions, so we have
been able to calculate all normals using partial derivatives. We have added two own functions
(see figure 4) to the seven test functions presented in [2].

The samples contained from 100, 900, 2500, and 4900 randomly selected points lying in
the interval [0, 1] × [0, 1], and they were different for each test function. As a result, we
have gathered 36 different input triangulations. We have compared 7 methods of calculating
normals using various weighted averages and one method using the local thin plate spline
interpolation function.

Some of the weighted average methods (e.g. the Akima method) make unwanted shapes
at the border of the constructed interpolant (see figure 3(a)) if the underlying triangulations
include very “long and thin” triangles, which often occur at the boundaries of the triangula-
tions. After deleting them1, the results significantly improved for the less robust methods (see
figure 3(b)). Moreover, the problem of calculating the values of the interpolation function
outside of the triangulation occurred. The next attempt for normals calculation on the bound-
ary of the triangulation was not to use normals which differ a lot from the “average normal”
(see algorithm 1). The combination of both modifications gave noticeable improvement (see
figure 3(c)).

Little’s and Max’s methods have the best results in the category of methods using the weighted
average. Little’s method was better for some data, and Max’s method was better for the other
ones (see the plots in figure 5). Consequently, we have decided to combine both methods
into one relation (Little-Max). Using this new method we have achieved a better “average
accuracy” (see plots in figure 5).

From the methods using local interpolants, we have selected thin plate splines instead of
Hardy’s multiquadrics because they do not require estimation of the parameter R.

In our test we have calculated:

1. The deviations of the estimated normals n̂i from the normals of the test function
∇ft(xi, yi) calculated using partial derivatives at the given point (xi, yi)

RMSEα =

√√√√∑n
i=1

(
cos−1

(
n̂i·∇ft(xi,yi)
|n̂i||∇ft(xi,yi)|

))2
n

.

Results are visualized in the plots in figure 5.
1We have deleted triangles whose inner angle exceed 178 degrees.
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Algorithm 1 “Unsuitable” normals removing
input: num_normals, trng_normals[], const = 1.0
output: trng_normals

if num_normals < 5 then
return

sum_norm = 0
for all normal in trng_normals do

sum_norm += normal

avg_normal = sum_norm/num_normals
sum_sqd = 0.0
for i = 0 to num_normals do

square_dif [i] = ‖trng_normals[i]− avg_normal‖2
sum_sqd += square_dif [i]

average_sqd = sum_sqd/num_normals
for i = 0 to num_normals do

delta_sqd = |square_dif [i]− average_sqd|
if delta_sqd > const ∗ average_sqd then

remove trng_normals[i] from list

(a) Constructed interpolant with original
normals calculation method

(b) After thin triangles deleted

(c) After “unsuitable” normals deleted

Fig. 3. Effect of a modification for calculating the normals on the shape
of constructed interpolant. The normals have been calculated by Akima

method
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2. The accuracy of “matching” the resulting interpolation surfaces calculated by the
Clough-Tocher and the Powell-Sabin method with the corresponding test function. To
test the accuracy of the interpolation surface, we have calculated the deviation from the
square of the difference between the function value of interpolation function f̂(x, y)
and the function value of the test function ft(x, y) for m = 2500 randomly selected
points from interval [0, 1]× [0, 1]:

RMSE =

√∑m
i=1(f̂(xi, yi)− ft(xi, yi))2

m
.

The plots in figure 6 present the result. Since the order of accuracy of the tested
methods was almost identical for both Clough-Tocher and Powell-Sabin interpolation
method, we present only the results for the first of them.

The approximate time in milliseconds of the individual normals calculation methods is pre-
sented in the table 3. All methods have been tested on the desktop PC with Intel(R) Core(TM)
i5-4670K CPU @3.40GHz processor with 8GB RAM.

4 Conclusion
As expected, the method using the local interpolant (see plots in figures 5 and 6) has come
out as the best one from all tested methods. The combination of Little’s and Max’s method
was the second best method in general. Both approaches of calculations were sufficiently
robust with respect to the used input data.

For applications not needing great speed of normals calculating, we recommend the method
which uses local thin plate spline interpolation. In other cases, we suggest to use the above
described combination of Little’s and Max’s method or one of them.

From table 3 it is clear that the method using local thin plate interpolation splines (TPS) is
approximately 5 times more computationally expensive than all the weighted average meth-
ods.

Our suggested combination of Little’s and Max’s methods is sufficiently robust considering
the triangulation of the input points and it could be used for the the construction of inter-
polants with the Clough-Tocher or Powell-Sabin method even without “unsuitable” normals
removing.

Methods/number of points 4900 points 8100 points
All methods except TPS ≈ 90ms ≈ 250ms
TPS method ≈ 480ms ≈ 1310ms

Tab. 1. A comparison of the times of computations
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List of the test functions
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Fig. 4. Pictures of the test functions
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Deviations between the calculated and the analytical normals
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Fig. 5. Plots of deviations between the calculated normal and the
analytical normal of the test function
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Deviations between the Clough-Tocher interpolant and the test function

Clough−Tocher: test function  f1(x, y)
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Clough−Tocher: test function  f2(x, y)
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Clough−Tocher: test function  f3(x, y)
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Clough−Tocher: test function  f4(x, y)
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Clough−Tocher: test function  f5(x, y)
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Clough−Tocher: test function  f6(x, y)
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Clough−Tocher: test function  f7(x, y)
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Clough−Tocher: test function  f8(x, y)
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Clough−Tocher: test function  f9(x, y)
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Fig. 6. Plots of deviations between the function value of the interpolation
and the test function
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