
IMPROVEMENT OF CHARACTER SET DETECTOR CHARDET

BOHDAL Róbert (SK)

Abstract. There are many encoding schemes which represent characters in text �les. If the

program displaying these texts cannot determine the right encoding, the text may become

unreadable. Thanks to the widely spread universal charset detector from Netscape, it is

possible to display text correctly in any software on any device. Language models for the

automatic character set detection have been created only for a small group of languages. Our

aim was to create language models for more countries so that the probability of successful

determination of the encoding increased. The most problematic was the increase in accuracy

of detecting the character set for languages using ISO-8859-1 encoding. The original algorithm

was not su�ciently precise, and we have therefore designed a di�erent procedure.

Keywords: character set, character encoding, detector, language identi�cation, n-gram

Mathematics subject classi�cation: Primary 68T50; Secondary 65C50.

1 Introduction

Thanks to the Internet and electronic media, people can access a big amount of documents in the
electronic version. Those documents can be read not only on monitors, tablets or smartphones,
but also on more and more popular e-readers. However, many old documents have not been
converted to the currently used character set UTF-8, and they remain in older encodings such
as ISO-8859 and Windows codepage. If the application does not recognise correctly in which
character set the document was created, many characters will not be displayed properly, and
some of them will not be displayed at all. The user then has to try several di�erent character
sets in the settings of the application in order to display all the characters correctly.

One of the �rst applications which used automatic detection of the character set in documents
was a web browser called Netscape. In fact, it was Netscape and later Mozilla, which developed
a fast and relatively reliable algorithm for automatic detection of the character set. The al-
gorithm was gradually developed in various programming languages for di�erent applications,
and it is used also in the wide-known application called Calibre for e-book management.

While opening many documents written in Slovak and Czech language in the Calibre, we have
encountered the inability of the program to correctly detect the character set, which led us to

97

the decision of improving the existing detector. Our aim was to modify the existing chardet
detector and create a publicly available tool for generating language models to improve the
automatic detection of character sets. Moreover, this detector is a standard part of packages
for Python language.

2 Background and Related Work

Only few authors discuss the methods of automatic detection of the character set, in which the
document was created. Besides the method by Li and Momoi [8], we can �nd a method chared
[11], which uses the comparison of trigram occurrences between the tested set of character and
the created language model. The disadvantage of classical methods based on the comparison
of the probabilities of occurrences of individual n-grams1 between the tested sample and the
language models created before is the inability to choose the character set correctly in multilin-
gual documents. Suzuki [14] tried to solve this problem using Shift-Codon-Matching process.
Kim and Park [7] described a method using a hybrid algorithm, which at �rst uses the Naive
Bayes method for the sequence of characters, which chooses the character set and consequently
uses SVM to increase the accuracy of the detection of the correct language. Very good results
of the detection of the character set using SVM method were obtained in [13].

We can �nd quite many articles discussing the methods of choosing the language in which
the text was written. Grothe [6] includes a good comparison study of methods identifying the
language of the analysed text. According to the authors, the majority of methods uses three
approaches for creating the language model. The �rst of them creates a language model based
on short words [5, 12]. The second approach uses the most common words [10], and the third is
based on the probability of occurrence of n-grams in the text [5, 2, 12]. The created language
model is then used for consecutive classi�cation of the text. Classi�cation methods use ad hoc
ranking [2], Markov chains together with the Naive Bayes method [4], SVM [15, 9] and other.
We can �nd a good overview study together with the comparisons of the success of various
methods of automatic detection of the language for web documents in html format in [3]. The
relation between the amount of test data and the length of the test data on the success of
language detection was researched in [1].

3 Character set and encoding detection

By character set we understand a table which chooses a mapping between the individual charac-
ters and individual bytes (codes of characters in strings). Each character2 is uniquely assigned
a number code consisting one or more bytes. The character sets can be sometimes the same
for some languages if we take into account only letters, i.e the letters have the same place in
various character set tables. An example of this is Romanian language which uses the character
sets ISO 8859-2 and Windows-1250. In such case the detector has to search for the characters
which occur in one character set and not in the other. Fortunately, character sets for encoding
Windows codepage include characters which are not present in ISO 8859 (e.g. symbol e, see
Tab. 1).

A worse situation happens with texts written in languages which use character sets whose
characters are at di�erent places in di�erent character set tables (see Tab. 2). If such text does

1We mean by n-gram a sequence of n characters of the text.
2By character we understand not only letters or numerals, but also any symbol which occurs in the text of

the �le, including control characters.

98

not include letters typical only for a particular character set, the algorithm has to �nd the best
language model.

A general way of identifying the language can be split into two steps. At �rst, a source language
model is created3 from a su�cient amount of test data (corpus) for each language. Next, a
target language model is created from the test data, for which we want to �nd the language.
Consequently, the detector compares the target language model with the individual language
models and based on some comparison criterion identi�es the language of the document. We
usually create more language models for each language, for each character set one. If the
characters representing the letters are at the same places in di�erent character sets, a new
language model is not created, and the detector decides according to the other characters.

Hex code 80 82 84 89 8B 91 92 93 94 95 96 9B A9 AB AE B7 BB
CP-1250 e � � � ` ' � � � � � © � ® · �

Tab. 1. Selected characters from Windows-1250 codepage

Hex code A1 A3 A5 A6 A9 AA AB AC AE AF B1 B3 B5 B6 B9 BA BB BC BE BF
CP-1250 � � � ¦ © � � ¬ ® � ± ª µ ¶ ¡ ³ � � © »
ISO 8859-2 � � � � � � � � � � ¡ ª © ± ² ³ ´ ¹ º »

Tab. 2. Comparing the ISO-8859-2 and Windows-1250 character sets

4 The detection of character set by chardet

The universal character set detector chardet created by Mozilla uses three di�erent approaches,
which support each other (see Fig. 1).

At �rst, a speci�c sequence of bytes is found, which classi�es the document. For example, each
document encoded in the encoding of UTF group usually begins with a speci�c sequence of bytes
marked as BOM. Next, if the input document includes character `ESC' or '∼{', the detector
knows the input text is probably encoded in one of the escape character sets encoding scheme
(HZ-GB-2312, ISO-2022-JP/CN/KR) and all characters between '∼{' and '∼}' are regarded
as national characters. The detector uses the state machine for this input for each relevant
character set. Immediately when the state is changed to 'itsMe' for a currently processes
character set, the detection �nishes. If the input text does not ful�ll the previous case and does
not contain a character with a code higher than 0x7F, it is encoded in ASCII.

The second and the third approach use statistical distribution of occurrence of characters in
the text for various character sets. The chardet uses a slightly di�erent method of detection
for single byte and multibyte character sets4. It uses the statistical distribution of unigrams for
multibyte character sets, but it uses bigrams for single byte character sets. The reason is there
are relatively few single byte characters for a reliable choosing of the character set based on the
statistical distribution. For languages which do not use latin characters, all latin characters are
�ltered before the processing.

Similarly as in cryptography, the relative frequency table of character occurrencies in the text
is used for identifying the language or character set of the document because that is unique for
each language in a given encoding. The method of chardet creates for the language model of

3A language model usually represents a table of n-grams sorted by their occurrences in the text.
4Singlebyte (multibyte) character set represents one character by one (more than one) byte.

99

See rst
3 bytes

Matches
BOM?

Yes
UTF series

Yes

Scan the rest
of document

Has char
 0x80?

No

No

Yes

No

Has char
0x33 or '~('?

ASCII

Run state machine for
HZ-GB-2312,ISO-2022-CN
ISO-2022-JP,ISO-2022-KR

recognition

Select the one whose
state machine arrives

'itsMe' state rst

Count frequent
patterns (char/bichar)

for each encodings

Calculate con dence=
#frequent patterns /
typical frequency of

frequent paterns

Select the encodings
with the highest

con dence

Fig. 1. Flow chart of the chardet detector

single byte character sets a table of 4096 bigrams created from the 64 most common occurring
letters sorted by their occurrencies in text. This table is then divided into four categories.
The �rst category represents the �rst 512 most frequent bigrams and is marked as positive
category, the second representing the next 512 frequent bigrams is marked as likely category.
The last negative category includes bigrams of letters which occur in the text rarely, and their
number in the text, from which the language model is created is lower than three occurrences
per bigram. The last but one unlikely category includes all bigrams between the second and
the fourth category.

While detecting the character set, chardet calculates the con�dence level value from the test
�le for each language model according to algorithm 1, and it chooses the character set based
on the highest value.

5 Our chardet modi�cation

The algorithm of chardet is su�ciently reliable for detecting the character sets which can be
distinguished by searching for speci�c bytes, but it fails in case of some European languages
especially because of the missing language models. Our aim was to create the missing models
so that chardet could detect the character sets more reliably. The new way of creating the
language model is described in algorithm 2. The improvement is that bigrams are now divided
into categories based on the thresholds of cumulative probability of their occurrence in the text.
The values of thresholds 0.95 and 0.999 were obtained using a heuristic approach so that the
resulting detection would give the smallest error on the test �les.

100

Algorithm 1 Con�dence Level Calculation
input: input_text, bigrams_frequencies table, tpr (typical positive ratio)
output: confidence_level
1: for all char in input_text do
2: if char is not a symbol or control character then
3: num_chars += 1

4: order = bigrams_frequencies[char]
5: if order < 64 then
6: freq_chars += 1
7: if last_order < 64 then
8: num_seqs += 1
9: category = GetCategoryV alue(last_order, order)
10: counters[category] += 1

11: last_order = order

12: confidence_level = counters[positive_cat]/(num_seqs/tpr) ∗ (freq_chars/num_chars)

We also used a di�erent approach than in the original algorithm for creating the mixed character
set ISO 8859-1. At �rst, we mutually compared the probabilities of the occurrence of individual
letters for all studied languages using correlation coe�cients (see Tab. 4). Since only a few of
the languages su�ciently mutually correlated, we have decided to assign letters into groups so
that the mutual correlations between the languages were not smaller than value 0.95 (see Tab.
5). The highest correlation was achieved by assigning the letters into the categories shown in
table 3. Similarly as while creating the language models for individual languages, also here the
sizes of the categories were chosen so that the detector gave the best results. Analogously, we
used optimization to choose the relation for the calculation of typical positive ratio value (see
algorithm 3). Our improved program also deletes from the text all html and xml element tags
for html and xml �les. Only such �ltered text continues to the detection.

Algorithm 2 Language Model Creation
input: input_text raw utf-8 data text, charset table
output: chars_map, bigrams_frequencies, typical_positive_ratio
1: Create chars_map[char] = 0 table for each char in the given charset
2: Create letters[] list from chars_map table
3: Create chars_frequencies[char] table for each char in chars_map table
4: Sort chars_frequencies[] table from the most frequent to less frequent char
5: Update chars_map[letter] value for each letter in letters list to a position index value of the letter in
chars_frequencies table

6: Create frequent_letters[] list for �rst 64 most frequent letters from chars_frequencies
7: Create bigrams_frequencies[bigram] table for each bigram created from frequent_letters list
8: Sort bigrams_frequencies[] table from the most frequent to less frequent bigram
9: Update bigrams_frequencies[bigram] value for each bigram to a category value
10: Calculate typical_positive_ratio =

(num_positivecat_bigrams+ 0.25 ∗ num_likelycat_bigrams)/num_bigrams ∗
(num_frequent_letters/num_letters)

6 Language models creation

The training data were obtained from publicly available sources on the internet in UTF-8
encoding. The data were a mixture composed of various documents: beletry, professional
(technical, scienti�c, politics, economics) literature and biblical texts. In case of beletry, the

101

Algorithm 3 Mixed Language Model Creation
input: n, lang_text[i] for i = 1 to n raw utf-8 data text, letter_codes list, chars_to_lcodes table
output: avg_bicodes_frequencies, typical_positive_ratio
1: Convert all chars in input lang_text[i] �les to letter codes using chars_to_lcodes table
2: Create bicodes_frequencies[i][bicode] table for each bicode created from letter_codes
3: Calculate average relative frequency for each bicode
avg_bicodes_frequencies[bicode] =

∑n
i=1 bicodes_frequencies[i][bicode]/n

4: Update avg_bicodes_frequencies[bicode] value for each bicode to a category value
5: Calculate typical_positive_ratio =

(num_positivecat_bicodes+ 0.25 ∗ num_likelycat_bicodes− num_unlikelycat_bicodes−
num_negativecat_bicodes)/num_all_bicodes/1.1532

letters category code characters
ascii small vowel 0 a e i o u y
small vowel accent 1 à á â ã è é ê ì í î ò ó ô õ ù ú û ý
small vowel other 2 ä å æ ë ï ö ø ÷ ü ¸
ascii small consonant 3 b c d f g h j k l m n p q r s t v w x z
small consonant other 4 ç ð � ñ ÿ ² þ º
ascii capital vowel 5 A E I O U Y
capital vowel accent 6 À Á Â Ã È É Ê Ì Í Î Ò Ó Ô Õ Ù Ú Û Ý
capital vowel other 7 Ä Å Æ Ë Ï Ö Ø × Ü �
ascii capital consonant 8 B C D F G H J K L M N P Q R S T V W X Z
capital consonant other 9 Ç Ð Ñ � Þ �

Tab. 3. Letters categories

EN FR DE ES PT IT SV NL DA FI

English (EN) 0,931 0,934 0,926 0,886 0,917 0,929 0,940 0,918 0,853
French (FR) 0,931 0,939 0,947 0,899 0,932 0,920 0,937 0,928 0,859
German (DE) 0,934 0,939 0,891 0,817 0,852 0,919 0,972 0,948 0,796
Spanish (ES) 0,926 0,947 0,891 0,971 0,966 0,926 0,919 0,902 0,844
Portuguese (PT) 0,886 0,899 0,817 0,971 0,949 0,880 0,854 0,834 0,828
Italian (IT) 0,917 0,932 0,852 0,966 0,949 0,907 0,893 0,871 0,876
Swedish (SV) 0,929 0,920 0,919 0,926 0,880 0,907 0,930 0,950 0,892
Dutch (NL) 0,940 0,937 0,972 0,919 0,854 0,893 0,930 0,968 0,813
Danish (DA) 0,918 0,928 0,948 0,902 0,834 0,871 0,950 0,968 0,789
Finnish (FI) 0,853 0,859 0,796 0,844 0,828 0,876 0,892 0,813 0,789

Tab. 4. Crosscorrelation of relative letters frequencies

EN FR DE ES PT IT NL DA FI

English (EN) 0.996 0.997 0.995 0.978 0.985 1.000 0.993 0.990
French (FR) 0.996 0.987 1.000 0.991 0.995 0.996 0.981 0.995
German (DE) 0.997 0.987 0.984 0.959 0.968 0.998 0.999 0.980
Spanish (ES) 0.995 1.000 0.984 0.994 0.996 0.994 0.978 0.995
Portuguese (PT) 0.978 0.991 0.959 0.994 0.999 0.976 0.950 0.991
Italian (IT) 0.985 0.995 0.968 0.996 0.999 0.983 0.960 0.996
Dutch (NL) 1.000 0.996 0.998 0.994 0.976 0.983 0.995 0.989
Danish (DA) 0.993 0.981 0.999 0.978 0.950 0.960 0.995 0.974
Finnish (FI) 0.990 0.995 0.980 0.995 0.991 0.996 0.989 0.974

Tab. 5. Crosscorrelation of relative letters categories frequencies

102

original chardet improved chardet
test �les accuracy calc. time accuracy calc. time
260 (european languages) 9.61% 9.681s 99.6% 12.560s
626 (all languages) 61.18% 68.149s 99.84% 40.614s

Tab. 6. Results of tests

documents were mainly current ones, but some were also historical. The minimum length of
the training data was 10 MB for each language. Longer parts in other languages were removed
from the documents. If a language model did not achieve a su�cient accuracy in the reverse
detection of the language, the training data were checked again, and also shorter parts in other
languages were removed.

7 Testing and conclusion

The testing data were mainly obtained from news servers from various countries across Europe
in txt format and UTF-8 encoding. These data were then re-encoded into the chosen character
sets. The minimum length of the test �les was 1 kB, which represents approximately 150 words.
The average length of a test �le was 4.7 kB. Besides the newly acquired documents, we used
also the original test �les of the chardet, which were in formats txt, html, xml and srt with
various length between 136 B to 582 kB.

Overall 17 languages were processed for improving the accuracy of detection of the character
set using chardet. Thereof 7 new language models were created for character set ISO-8859-
2/Windows-1250 (Czech, Croatian, Hungarian, Polish, Romanian, Slovak, Slovenian). A new
mixmodel for ISO-8859-1/Windows-1252 (English, French, German, Spanish, Portuguese, Ital-
ian, Dutch, Danish, Finnish) was created. Swedish language was not included in this model
because of poor correlation with other countries using character set ISO-8859-1. Norwegian
language was not included in the model because of missing data for creating frequency table.
The language models for Turkish and Greek were repaired because of improving the accuracy
of detection.

Overall 18 languages were tested for character sets ISO-8859-1/Windows-1252 and ISO-8859-
2/Windows-1250 on 270 �les. 8 results were incorrect, from which 1 of 10 was for Finnish
language and 7 of 10 was for Swedish language. Since Swedish language model has not been
created yet, only 1 result was truly incorrect. Moreover, this incorrect result is not surprising
because the detector confused Finnish language with Hungarian language. It is known that
both languages belong to the group of Ugro-Finnic languages and are related by their bigrams.
After excluding the test �les for Swedish language, we got 99.6% accuracy (see Tab. 6). The
test of the original unimproved detector on the same �les ended very badly. The program
received 233 failures from 249 tested �les. Moreover, it did not run on two �les and did not
give any result. The reason is the model for ISO-8859-1 was created without a more detailed
analysis of the relation between characters or character sets, and there were missing language
models for countries using character set ISO-8859-2. The group ISO-8859-2 was represented
only by Hungarian language and even that was detected incorrectly in some cases.

The existing program chardet was not only supplemented by new language models, but also
some parts of the source code were modi�ed. Despite adding other language models, which
means increase in the number of performed operations, the program increased its speed when
testing 626 �les by more than 40%.

103

We strongly believe that the proposed changes will be gradually incorporated into the main
development branch of widely used chardet detector, which will improve the accuracy of auto-
matic detection of character set in many applications.

8 Acknowledgement

This paper arose thanks to the support of the project KEGA 094UK-4/2013 �Ematik+, Con-
tinuing education of mathematics teachers�, http://elearn.ematik.fmph.uniba.sk.

References

[1] BALDWIN, T., LUI, M. Language identi�cation: The long and the short of the matter,
in Human Language Technologies: The 2010 Annual Conference of the North American
Chapter of the Association for Computational Linguistics, 2010, pp. 229�237.

[2] CAVNAR, W. B., TRENKLE, J. M., et al. N-gram-based text categorization, Ann Arbor
MI, vol. 48113, no. 2, (1994), pp. 161�175.

[3] CHEW, Y. C., MIKAMI, Y., NAGANO, R. L. Language identi�cation of web pages based
on improved n-gram algorithm, International Journal of Computer Science Issues, vol. 8,
no. 3, (2011), pp. 47�58.

[4] DUNNING, T. Statistical identi�cation of language, Computing Research Laboratory, New
Mexico State University, 1994.

[5] GREFENSTETTE, G. Comparing two language identi�cation schemes, 3rd International
conference on Statistical Analysis of Textual Data (JADT 1995).

[6] GROTHE, L., De LUCA, E. W., NÜRNBERGER, A. A comparative study on language
identi�cation methods., in LREC, 2008.

[7] KIM, S., PARK, J. Automatic detection of character encoding and language, Tech. rep.,
CS 229, Machine Learning, Stanford University, 2007.

[8] LI, S., MOMOI, K. A composite approach to language/encoding detection, in 19th Unicode
Conference, San Jose, 2001.

[9] LODHI, H., SAUNDERS, C., SHAWE-TAYLOR, J., CRISTIANINI, N., WATKINS, C.
Text classi�cation using string kernels, The Journal of Machine Learning Research, vol. 2,
(2002), pp. 419�444.

[10] MARTINO, M. J., PAULSEN Jr, R. C. Natural language determination using partial
words, 2001, US Patent 6,216,102.

[11] POMIKÁLEK, J., SUCHOMEL, V. chared: Character encoding detection with a known
language, in RASLAN, 2011, pp. 125�129.

[12] PRAGER, J. M. Linguini: Language identi�cation for multilingual documents, in Proceed-
ings of the 32nd Hawaii International Conference on System Sciences, IEEE, 1999, pp.
11�pp.

[13] SULLIVAN, S. R. Character set encoding detection using a support vector machine.

[14] SUZUKI, I. A language and character set determination method based on n-gram statistics,
ACM Transactions on Asian Language Information Processing (TALIP), vol. 1, no. 3,
(2002), pp. 269�278.

[15] TEYTAUD, O., JALAM, R. Kernel-based text categorization, in In International Joint
Conference on Neural Networks, vol. 3, 2000, pp. 1891�1896.

104

Current address

Róbert Bohdal, RNDr., PhD.
Department of Algebra, Geometry and Didactics of Mathematics
Faculty of Mathematics, Physics and Informatics
Comenius University in Bratislava
Mlynska Dolina, 842 48 Bratislava, Slovak Republic
Tel. number: +421-2-602 95 ext. 185, e-mail: robert.bohdal@fmph.uniba.sk

105

