
Introduction to Matlab

Elementary arithmetic

Elementary arithmetic operations in order of precedence from lowest to highest: To change the order

+ , − addition, subtraction,
∗ , / multiplication, division,
ˆ power

Table 1: Elementary Matlab operations

of precedence in an expression use parentheses ().
Example

>> 2+3

ans =

5

>> 3.17 − 2 .77

ans =

0.4000

>> 3/2^3

ans =

0.3750

>> (3/2)^3

ans =

3.3750

To suppress output use semicolon ';' at the end of formula/command
Example

>> 37^21;
>>

Functions

Non-user de�ned functions in Matlab start with lower-case letter and are of the form

functionname(variable1 , variable2 , . . .)

Some well known functions are given in following table:

sqrt(x) = square root of x
exp(x) = en

log(x) = natural logarithm of x
sin(x) = sine of x in radians
cos(x) = cosine of x in radians
tan(x) = tangent of x in radians

Table 2: Some elementary Matlab functions

Here x can be number, expression possibly containing another function, matrix (see further below)
etc. You can �nd more information about any internal function and its usage by placing caret on
name of a function and pressing F1 key.
Example

>> sqrt (2)

ans =

1.4142

>> sin (3 . 1415/2)

ans =

1.0000

>> sqrt (sin (3 . 1415/4))

ans =

0.8409

Variables

Variable names must begin with a letter, which can be followed by any number of letters, digits
and underscores. Operator '=' is used to assign a value to a variable. To display de�ned variable
(i.e. variable with assigned value) write name of the variable. You can use de�ned variables in
computations with functions and arithmetic operators.
Example

>> sroot2 = sqrt (2)

s roo t2 =

1.4142

>> sroo t2

s roo t2 =

1.4142

>> expr e s s i on = sroo t2 + 3 ∗ s roo t2

exp r e s s i on =

5.6569

>> sin (exp r e s s i on)

ans =

−0.5862

Matrices

Matlab is essentially working with matrices. Even numbers are considered as 1 by 1 matrices. To
de�ne a matrix use brackets '[]'. You de�ne a matrix line by line; '[' starts de�nition, elements in
lines are separated by comma ',' or space ' ', lines are separated by semicolon ';' or new line (Enter).
']' �nishes de�nition of matrix.
Example

>> A = [1 2 3 ; 4 5 6]

ans =

1 2 3
4 5 6

>> B = [9 , 8 , 7
6 , 5 , 4]

ans =

9 8 7
6 5 4

There are more elementary operations on matrices which are given in next table with obvious con-
strains on dimensions of matrices:

+ , − standard matrix addition, subtraction,
∗ standard matrix multiplication,
.∗ element-wise multiplication,
′ transposition with complex conjugation
.′ transposition without complex conjugation
ˆ power of matrix
.ˆ element-wise power
./ element-wise left division; A./B has elements A(i,j)/B(i,j)
\ �nds solution to matrix equation AX=B (Gauss or least squares)

Table 3: Matrix operations

Exercise

1. De�ne a few matrices and try out the aforementioned operations.

2. Use matrix as input in functions from Table 2 and explain obtained result. In fact, many
functions work in similar way for matrices.

There are other ways to de�ne matrices with certain pattern of its elements. Function 'zeros(n)'
creates n by n zero matrix, 'zeros(m,n)' creates zero matrix with m lines and n columns. Function
'ones(n)' de�nes square matrix with all its elements equal to 1 and it has nonsquare version as well.
'rand(m,n)' generates (pseudo)random m by n matrix.
Operator ':' is used in the form 'a:b' or 'a:'step':b and generates one row matrix of numbers in
sequence from a to b with di�erence 1 or 'step'.
Example

>> 2:8

ans =

2 3 4 5 6 7 8

>> 1 . 2 : 0 . 5 : 3

ans =
1.2 1 .7 2 .2 2 .7

Exercise

1. De�ne one-column matrix with squares of integers from 1 to 10 as its elements.

Matrix elements access

For de�ned matrix A, the command 'A(n)', for positive integer 'n', returns n-th element of A; here
A is considered as one column matrix with all columns of A stacked one under another.
To get an element in the i-th row and j-th column, one uses A(i,j).
Other matrices can be used for indexing as well, e.g. A(1:3:end,:) returns matrix which consists of
�rst, fourth, seventh ... row of matrix A.

Exercise

1. De�ne 10 by 10 random matrix A and generate matrix B consisting of all elements of A with
even coordinates.

Logicals

We can compare two matrices of the same dimension, using standard relations >,<,>=,<=,∼=,==.
Comparison of matrices returns a matrix with elements 0 and 1, depending on true or false state on
corresponding coordinates.
Example

>> A=[1 2 3 ;2 3 4] ;
>> B=[2 2 2 ;2 2 2] ;
>> A > B

ans =

0 0 1
0 1 1

>> A ~= B

ans =

1 0 1
0 1 1

Comparison returns so called logical matrix, which can be used for indexing
Example

>> A=[1 2 3 ;2 3 4] ;
>> B=[2 2 2 ;2 2 2] ;

>> In = A ~= B

In =

1 0 1
0 1 1

>> A(In) = −1

ans =
−1 2 −1
2 −1 −1

If you create matrix A which contains only 0 and 1 as elements, you cannot use such a matrix for
indexing, because the matrix is not of logical type, however you can change its type using command
'logical(A)'

>> A=[1 2 3 ;2 3 4] ;
>> B=[1 0 1 ;0 1 0] ;

>> A(B)=−1

??? sub s c r i p t i n d i c e s must e i t h e r be real p o s i t i v e
i n t e g e r s or l o g i c a l s

>> A(l o g i c a l (B))=−1

ans =
−1 2 −1
2 −1 4

Problems

1. Solve system of linear equation

2x− 3y + 5z − w = 17

−4x+ y − 11z + 3w = −19
−17x− 5y + 3w = 2

5x− 3y + 12z + 12w = 9

If A is matrix of the system, B is right side and X is solution of the system, compute B�A∗X.

2. Solve overdetermined system

2x− 3y + 5z = 17

−4x+ y − 11z = −19
−17x− 5y = 2

5x− 3y + 12z = 9

Another useful function is 'size(A)', which returns a matrix containing dimensions of matrix A, i.e.
number of rows and number of columns respectively. There can be de�ned multidimensional matrices
with more than two dimensions, typical example is matrix representation of RGB image.

Images

The command 'imread('image_�le.bmp/jpg/...')' returns RGB matrix representation of an image.
This matrix has three dimensions (use 'size' command), �rst two are dimensions of the image and
second is 3 � one for each colour. Elements of this matrix represent intensity of given colour. There
are two possible representation of this intensities, either by real number between and including 0 and
1, or by integers from 0 to 255. But only one of these is used for a particular image matrix. Standard
two dimensional matrix represents greyscale image.

To show matrix A (two dimensional greyscale or 3 dimensional RGB) as image use command
'imshow(A)'.
Example

>> A = 0 : 1 / 2 5 5 : 1 ;
>> B = repmat (A, 1 0 0 , 1) ;
>> imshow(B)

here the function 'repmat' creates matrix with 100 rows and 1 column but each element of this matrix
is matrix A. That means at the end we get matrix with 100 rows and 256 columns, because A has 1
row and 256 columns.

>> A = 0 : 2 5 5 ;
>> B = repmat (A, 1 0 0 , 1) ;
>> imshow(uint8 (B))

Function 'uint8' changes type of matrix B which was user de�ned, i.e. has type double and in that
case (double) function 'imshow' requires real values 0 to 1 for intensities. For (unsigned) integer
values (uint8) the intensities are represented by integers from 0 to 255.
Exercise

1. Load a colour image and extract three colour channels into three di�erent matrices. Show this
channels in their proper colours (i.e. red in red colour, etc.).

2. Load a colour image and construct grayscale representation of the image. Hint: You have
to combine red, green and blue channels of image matrix into one number. There is obvious
combination (arithmetic mean) but this does not represent intensities very well (we don't
perceive intensities of red, green and blue evenly). Experiment with di�erent weights of colour
channels.

There is function 'rgb2gray(RGBmatrix)' which returns grayscale matrix representation from RGB
matrix representation of an image.
Example

>> RGBimg = imread (' image .bmp ') ;
>> imshow(RGBimg) ;
>> GsImg = rgb2gray (RGBimg) ;
>> imshow(GsImg)

Problems

1. Load image and downsample it by the factor of 2, e.g. take submatrix containing element on
places with even coordinates. Repeat this process for obtained matrix several times (4 or 5),
show resulting images and observe changes.

To save a matrix use command 'imwrite(n,'name.ext '), where n is the image matrix and ext is type
of image �le, e.g. bmp, jpg, png.

Functions

We write function into �le with extension m, name of the �le is the same as name of the function.
The �le starts with function header de�nition in the form

function ReturnValue = FunctionName (InputValue1 , InputValue2)

or

function [ReturnValue1 , ReturnValue2 , . . .] =
FunctionName (InputValue1 , InputValue2)

if you want to return more then one value (matrix). Body of the function then contains a sequence
of commands. To return a value, assign it to the name given to it in the header. E.g. following
function will be de�ned in �le 'AritMean2.m'.

function Result = AritMean2 (A, B)
Result = (A + B)/2 ;

Problems

1. Write and test a function, which gets a grey-scale image matrix as input and returns an intensity
histogram of this image, i.e. a vector which has number of pixels of intensity i on i + 1-th
position (positions are counted from 1, intensities from 0). Function 'sum' may be useful. You
can plot the histogram in the form of a bar graph using command 'bar'. Or you can learn
about functions 'reshape' and 'hist' as well and use them.

2. Write and test a function, which gets RGB image matrix and returns three histograms, one for
each colour channel. You can use previous function inside this one.

