Image preprocessing
 Frequency analysis and filtering

Fourier series

Jean Baptiste Joseph Fourier (1768-1830)

- 1822—The Analytical Theory of Heat
- Any function of a variable can be expanded in a series of sines of multiples of the variable

$$
\begin{gathered}
f(x)=\sum_{n=0}^{\infty} A_{n} \sin \left(B_{n} x+C_{n}\right)= \\
a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(B_{n} x\right)+b_{n} \sin \left(B_{n} x\right)
\end{gathered}
$$

Fourier series

- For T-periodic function f, which is integrable on interval of length T

$$
f(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{2 \pi n}{T} x\right)+b_{n} \sin \left(\frac{2 \pi n}{T} x\right)
$$

- Functions \sin and cos are orthogonal, i.e.

$$
\int_{T} \sin \left(\frac{2 \pi n}{T} x\right) \cos \left(\frac{2 \pi m}{T} x\right) d x=0
$$

Fourier series

$$
\int_{T} \cos \left(\frac{2 \pi n}{T} x\right) \cos \left(\frac{2 \pi m}{T} x\right) d x=\left\{\begin{array}{cl}
0 & n \neq m \\
\frac{T}{2} & n=m
\end{array}\right.
$$

similarly for sin

$$
\int_{T} \sin \left(\frac{2 \pi n}{T} x\right) \sin \left(\frac{2 \pi m}{T} x\right) d x=\left\{\begin{array}{cc}
0 & n \neq m \\
\frac{T}{2} & n=m
\end{array}\right.
$$

This admits computation of coefficients a_{n} and b_{n}.

Fourier coefficients

$$
\begin{gathered}
a_{0}=\frac{1}{T} \int_{T} f(x) d x \\
a_{n}=\frac{2}{T} \int_{T} f(x) \cos \left(\frac{2 \pi n}{T} x\right) d x, n \neq 0 \\
b_{n}=\frac{2}{T} \int_{T} f(x) \sin \left(\frac{2 \pi n}{T} x\right) d x
\end{gathered}
$$

Geometric viewpoint

- a_{0} represents mean value of function f on a given interval
- a_{n} and b_{n} represent how much functions \sin and \cos of given frequencies correlate with function f.

Geometric viewpoint

Complex version

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{\frac{2 \pi n}{T} i x}
$$

- Suggested by Euler's formula

$$
e^{i x}=\cos x+i \sin x
$$

- c_{n} is in general a complex number.
-

$$
c_{n}=\frac{1}{T} \int_{T} f(x) e^{-\frac{2 \pi n}{T} i x}
$$

- Assuming f is real, right hand side must be real and c_{n} must fulfill conditions

$$
\begin{gathered}
c_{0}=a_{0} \\
c_{n}=\frac{a_{n}-i b_{n}}{2}, \text { if } n \geq 1, \\
c_{n}=\bar{c}_{|n|}, \text { if } n \leq 1
\end{gathered}
$$

Coefficient plot, $T=4$

Coefficient plot, $T=8$

Coefficient plot, $T=12$

Coefficient plot, $T=24$

Fourier transform

If $T \rightarrow \infty$, for particular frequency $\xi=\frac{n}{T}$ value of integral

$$
T c_{n}=\int_{T} f(x) e^{-\frac{2 \pi n}{T} i x} d x
$$

remains unchanged. We then put

$$
\mathcal{F}\{f(x)\}=F(\xi)=T c_{n}=\int_{-\infty}^{\infty} f(x) e^{-2 \pi \xi i x} d x
$$

The inverse Fourier transform is given by

$$
\mathcal{F}^{-1}\{F(x)\}=f(x)=\int_{-\infty}^{\infty} F(x) e^{2 \pi \xi i x} d x
$$

Useful properties

- Linearity

$$
\mathcal{F}\{a f(x)+b f(y)\}=a \mathcal{F}\{f(x)\}+b \mathcal{F}\{g(x)\}
$$

- Duality

$$
\mathcal{F}\{F(x)\}=f(-\xi)
$$

- Product

Convolution

$$
(f * h)(x) \equiv \int_{-\infty}^{\infty} f(x) h(x-\tau) d \tau=\int_{-\infty}^{\infty} f(x-\tau) h(x) d \tau
$$

- Expresses amount of overlap of one function $f(x)$ as it is shifted over another function $h(t)$.

Convolution - discrete version

$$
f(i, j)=\sum_{(m, n) \in \mathcal{O}} h(i-m, j-n) g(m, n)
$$

- \mathcal{O} is a local neighbourhood of pixel (i, j).

Convolution - properties

$$
\begin{gathered}
f * h=h * f \\
f *(g * h)=(f * g) * h \\
f *(g+h)=f * g+f * h \\
a(f * g)=(a f) * g=f *(a g) \\
\frac{d}{d x}(f * h)=\frac{d f}{d x} * h=f * \frac{d h}{d x}
\end{gathered}
$$

Back to Fourier

- Product

$$
\mathcal{F}\{f(x) g(x)\}=F(\xi) * G(\xi)
$$

- Convolution

$$
\mathcal{F}\{(f * g)(x)\}=F(\xi) G(\xi)
$$

Discreet Fourier transform (DFT)

- Computers deal with discrete signal $f(n), n=0, \ldots N-1$.
- DFT is defined as

$$
F(k)=\frac{1}{N} \sum_{n=0}^{N-1} f(n) e^{-2 \pi i \frac{n k}{N}}
$$

- Inverse DFT is defined as

$$
f(n)=\sum_{k=0}^{N-1} F(k) e^{2 \pi i \frac{n k}{N}}
$$

- Spectrum is periodic with period N.

Adding a dimension

- In 2D the Fourier transform can be generalized as

$$
F(u, v)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{-2 \pi i(x u+y v)} d x d y
$$

- and inverse transform is

$$
f(x, y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{2 \pi i(x u+y v)} d u d v
$$

Convolution theorem

$$
\begin{aligned}
\mathcal{F}\{(f * h)(x, y)\} & =F(u, v) H(u, v) \\
\mathcal{F}\{(f(x, y) h(x, y)\} & =(F * H)(u, v)
\end{aligned}
$$

Discreet version

- DFT in 2D

$$
\begin{gathered}
F(u, v)=\frac{1}{M N} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m, n) e^{-2 \pi i\left(\frac{m u}{M}+\frac{n v}{N}\right)} \\
u=0,1, \ldots, M-1, \quad v=0,1, \ldots, N-1
\end{gathered}
$$

- and its inverse

$$
\begin{gathered}
f(m, n)=\sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u, v) e^{2 \pi i\left(\frac{m u}{M}+\frac{n v}{N}\right)} \\
m=0,1, \ldots, M-1, \quad n=0,1, \ldots, N-1
\end{gathered}
$$

Different spectra

- Complex spectrum - hard to visualise

$$
F(\xi)=\Re(F(\xi))+i \Im(F(\xi))
$$

Suitable for visualisation

- Amplitude spectrum

$$
|F(\xi)|=\sqrt{\Re(F(\xi))^{2}+\Im(F(\xi))^{2}}
$$

- Phase spectrum

$$
\Phi(\xi)=\arctan \left(\frac{\Im(F(\xi))}{\Re(F(\xi))}\right)
$$

- Power spectrum

$$
P(\xi)=|F(\xi)|^{2}
$$

Amplitude spectrum

Another types of transformations

- Discrete cosine transform
- Wavelet transform

Image sampling

- Dirac distribution $\delta(x, y)$

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta(x, y) d x d y=1
$$

- Represents ideal impulse

Image sampling

- Sifting property

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \delta(x-\lambda, y-\mu) d x d y=f(\lambda, \mu)
$$

Image sampling

- $f(x, y)$ is continuous image function.
- Samples at $x=j \Delta x, y=k \Delta y, j=1, \ldots, M, K=1, \ldots, M$.
- $\Delta x, \Delta y$ - sampling intervals, i.e. distance of two neighbouring sampling points in x and y direction respectively.
- $f(j \Delta x, k \Delta y)$ - discrete image function

Image sampling

- Ideal sampling in regular grid:

$$
s(x, y)=\sum_{j=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} \delta(x-j \Delta x, y-k \delta y)
$$

- Sampled image

$$
f_{s}(x, y)=f(x, y) s(x, y)
$$

- What happens at frequency spectrum?

Image sampling

- Fourier transform of f_{s}

$$
F_{s}(u, v)=\frac{1}{\Delta x \Delta y} \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} F\left(x-\frac{m}{\Delta x}, y-\frac{n}{\Delta y}\right)
$$

- Fourier transform of sampled image is sum of periodically repeated Fourier transform of continuous image function.

Image sampling

Figure 3.10: Repeated spectra of the 1 D signal due to sampling. Non-overlapped case when $f_{s} \geq 2 f_{m}$.

- f_{s} is sampling frequency, f_{m} is maximal frequency in the signal.
- Overlapping means aliasing.
- Shannon sampling theorem

$$
\Delta x<\frac{1}{2 U}, \quad \Delta y<\frac{1}{2 V}
$$

U, V are maximal frequencies.

Image sampling

- Shannon sampling theorem

$$
\Delta x<\frac{1}{2 U}, \quad \Delta y<\frac{1}{2 V}
$$

U, V are maximal frequencies.

- Sampling interval should be shorter then half of the smallest interesting detail in the image.

